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Abstract We argue that in the presence of transaction costs, observed productivity
measures may in many cases understate the true productivity, as production data sel-
dom distinguish between resources entering the production process and resources of
a similar type that are sacrificed for transaction costs. Hence, both the absolute pro-
ductivity measures and, more importantly, the productivity ranking will be distorted.
A major driver of transaction costs is poor access to information and contract en-
forcement assistance. Social networks often catalyse information exchange as well
as generate trust and support. Hence, we use measures of a firm’s access to social
networks as a proxy for the transaction costs the firm faces. We develop a microe-
conomic production model that takes into account transaction costs and networks.
Using a data set of 384 Polish farms, we empirically estimate this model and com-
pare different parametric, semiparametric, and nonparametric model specifications.
Our results generally support our hypothesis. Especially large trading networks and
dense household networks have a positive influence on a farm’s productivity. Fur-
thermore, our results indicate that transaction costs have a measurable impact on the
productivity ranking of the farms.
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1 Introduction

Productivity, relating output quantities to input quantities, is a popular and widespread
concept to measure the performance of firms, public services, and even nations. To
explain the variation in observed productivity measures, it is common to assume that
some enterprises use an inferior production technology and/or use production inputs
inefficiently, e.g., because of managerial deficiencies or low qualifications.

However, we propose another—less obvious—source of variation in observed
productivity measures, which is unrelated to the production process as such, but orig-
inates from the transaction costs the producer faces on input and output markets, and
in the search for technological innovations (Williamson, 2000; Castilla et al, 2000).
Transaction costs that originate from trade activities and knowledge acquisition con-
sume resources often similar in type to those that enter into the production process.
Hence, if transaction costs of a certain magnitude are present, we can distinguish be-
tween two usages of inputs: (a) inputs fed into the production process and (b) inputs
consumed by transaction costs. As most production data combine these two usages
into a single variable, productivity analyses based on such data can result in down-
ward biased estimates of the true productivity of the production process. More im-
portantly, if firms are unequally affected by transaction costs, the distortions of the
productivity estimates also change the relative productivity differences between the
analysed enterprises, i.e., the ranking of the observed productivity.

A crucial factor which determines the level of transaction costs a firm faces is ac-
cess to information and contract enforcement assistance (Ménard, 2000; Levi, 2000;
den Butter and Mosch, 2003). Therefore, we expect distortions to be particularly
large for production data from enterprises with missing or limited access to formal
institutions and public information channels—like firms in developing countries or
in remote and rural areas in transition countries such as Poland. Earlier studies have
shown that in the absence of well-functioning formal institutions and public infor-
mation channels, social networks often supersede these formal facilitators (e.g., Nee,
1998; Fafchamps, 2001; Henning and Zuckerman, 2006). But in contrast to formal
institutions, which (ideally) are equally accessible to everybody, the access to the
benefits of a network varies with a firm’s position in the network1 (Buskens, 1999;
Dekker, 2001). Based on these findings, we argue that in the presence of transaction
costs, a firm’s network will have a measurable impact on the firm’s observed pro-
ductivity, i.e. a firm’s network will be a proxy for otherwise unobservable transaction
costs.

A vast literature has quantified the effect of social networks on various firm per-
formance measures (Stam et al, 2013), such as production efficiency (Lau and Bruton,
2011), labour and capital productivity (Di Matteo et al, 2005), or other broader non-
monetary performance indicators (Bradley et al, 2012; Prajapati and Biswas, 2011).

1 A firm’s network position refers to the structural connectedness of the firm to other firms and other
relevant actors.
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Other studies (Luo, 2003; Beckmann et al, 2004; Henning et al, 2012) have empiri-
cally analysed the linkage between market uncertainty, as one element of transaction
costs, and networks. A third strand of literature has examined the effect of networks
as information channels on the process of innovation adoption (Jenssen and Koenig,
2002; Di Matteo et al, 2005; Bandiera and Rasul, 2006). All studies report that social
networks have significant effects; in a meta-analysis Stam et al (2013) found that the
magnitude of the effect of social networks on firm performance even exceeds the ef-
fect of human capital. These findings support our choice of proxy and confirm that
networks have a positive effect on firm performance, market uncertainty, and infor-
mation flow.

However, a coherent theoretical model linking social networks, transaction costs,
and productivity together is still missing. Furthermore, to the best of our knowledge,
no other study so far has explicitly modelled the effect of transaction costs on ob-
served productivity. By doing so, we want to demonstrate that in cases where high
transaction costs prevail, the interpretation of observed productivity measures must
be based on a broader perspective than the current standard. In situations where high
transaction costs must be expected, the observed productivity is a measure of firm
productivity rather than a measure of the efficiency of the production process itself.
This change in perspective can have implications for policy recommendations, e.g.,
policies concerning the promotion of farm and firm productivity in developing or
transition countries.

We base our analysis on a cross-sectional dataset from a representative sample of
384 Polish farms. The dataset contains production data as well as data on ego-centred
farm networks2.

As earlier empirical studies find different functional relationships between social
network parameters and measures of firm performance (Yu and Chiu, 2013; Stam
et al, 2013) we apply and compare different parametric, semiparametric, and non-
parametric specifications of the regression function in our analysis. The results show
strong consistency over most estimation models and support our hypothesis and ear-
lier findings that social networks have a significantly positive effect on farm produc-
tivity. In particular, large trading networks and dense household networks promote
farm productivity. In contrast to studies reporting a non-linear relationship between
measures of closure and firm performance (Uzzi, 1996; Yu and Chiu, 2013), our
results generally support only a linear relationship between density and farm produc-
tivity. Furthermore, our results strongly indicate that by ignoring transaction costs,
both the absolute observed productivity measures as well as the productivity ranking
change considerably.

The remainder of the article is structured as follows: section two introduces the
theoretical concept combining social networks, transaction costs, and productivity
into a coherent model; section three gives a short description of the data; section
four and five present the econometric specifications and the results, respectively; and
section six discusses the findings.

2 Ego-centred networks are networks sampled with open boundaries which are structured around one
actor, the ego. In our particular case, the ego is the farmer. In contrast, a full network is a network with
closed boundaries where the ties between all actors in the closed set are mapped.
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2 Microeconomic Foundation

We assume that a firm uses a vector of n input quantities xPD = (xPD
1 , . . . ,xPD

n )′ to
produce the output quantity y, where the transformation of the inputs into the output
can be described by the production function:

y = f (xPD,T ), (1)

where T indicates the productivity level of the firm’s production activities.3
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Fig. 1: Influence of transaction costs on the measurement of firm productivity

Figure 1 illustrates, by means of a simplified production process, the role of trans-
action costs in empirical production analysis. The solid black curve indicates the pro-
duction function f (xPD,T ). The three grey dots indicate the input quantities used for
production (xPD) and the corresponding output quantities (y) of three different firms
(named A, B, and C). For simplicity, we assume that all three firms have an average
productivity level (T ) compared to other firms of the same size so that all three grey
dots lie on the production function f (xPD,T ). As argued above, firms also use in-
puts for trade activities and knowledge acquisition (xTAC) so that the observed input
quantities are xOBS = xPD +xTAC. The observed input quantities of the three firms are
indicated by black dots in Figure 1. Firms A and C have relatively large transaction
costs, while firm B has relatively small transaction costs. The average relationship
between the observed input quantities (xOBS) and the output quantities (y) are indi-
cated by the dotted curve. We call this relationship augmented production function
and we claim that empirical production analysts usually estimate this augmented pro-
duction function rather than the true production function f (xPD,T ). The larger the

3 The following derivations can also be calculated for multiple outputs, but for simplicity we only use
a single output here.
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input quantities that are used for trade activities and knowledge acquisition (xTAC),
the larger the difference between the true production function (solid curve) and the
augmented production function (dotted curve). Our illustration also shows that differ-
ences in the firms’ transaction costs affect the measured productivities of these firms.
The production processes of all three firms in our example have an average produc-
tivity level compared to other firms of the same size, i.e. their points of production
(grey dots) are located on the average true production function (solid line). However,
an empirical production analyst will find that firms A and C that have relatively large
transaction costs have a lower productivity compared to other firms of the same size,
i.e. their observed points of production (black dots) are below the augmented produc-
tion function (dotted curve), while firm B that has relatively small transaction costs
has a higher productivity compared to other firms of the same size, i.e. its observed
point of production (black dot) is above the augmented production function (dotted
curve).

In the following, we derive a simple microeconomic model that takes transaction
costs induced by innovation adoption and by trade activities into account.

2.1 Production technology and innovation

We assume that the adoption of productivity enhancing innovations is not cost free for
the firm, but uses resources that can be of the same type as the inputs used for the pro-
duction (e.g. labour, office supplies, IT technology, fuel). We denote these resources
by xIN = (xIN

1 , . . . ,xIN
n )′, where the elements of xIN correspond to the elements4 of

xPD so that we can calculate the total input quantities that the firm uses for production
and for improving the productivity of its production activities by xobs = xPD + xIN .
The firm can utilise its network to improve the productivity of its production activ-
ities by gathering information from peers, which is otherwise difficult or costly to
obtain or even unavailable. We assume that these relationships can be described by
the function:

T = k(xIN ,z,u), (2)

where z is a vector of network parameters characterising the firm’s networks and u
is a vector of other factors that might affect the productivity of the firm’s production
activities or the resources that the firm needs to improve its productivity by a given
level (e.g. the education of the management).

Datasets that are used for estimating production functions generally do not sepa-
rate between input quantities used for the actual production (xPD) and input quantities
used to improve the productivity of production activities (xIN). If no other transaction
costs are included in the observed input quantities, they would be xobs = xPD + xIN .
Therefore, the following approximation is necessary for empirical applications:

y = f (xPD,T ) = f (xPD,k(xIN ,z,u))≈ f ∗(xPD +xIN ,z,u) = f ∗(xobs,z,u). (3)

4 Of course, some elements of xIN might be zero (e.g. raw materials). If some inputs are only used
for improving the productivity of the firm’s production activities, but not in the actual production (e.g.
advisory services or consulting), we can add further elements to the vector xPD and set these elements to
zero.
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2.2 Transaction costs in trade

In addition to the resources required for the production (xPD) and for improving the
productivity of the production activities (xIN), the firm needs further resources for
trading goods, i.e. purchasing the inputs and selling the output. These resources can
be of the same type as the inputs used for production (e.g. labour, capital, office sup-
plies, IT technology, fuel). We denote the vector of resources used for trading goods
by xT D = (xT D

1 , . . . ,xT D
n )′, where the elements of xT D correspond to the elements5

of xPD, xIN , and xobs. Hence, we can calculate the total input quantities that the firm
acquires to produce the output, improve the productivity of its production activities,
and to trade the goods by xOBS = xobs + xT D = xPD + xIN + xT D = xPD + xTAC. We
expect that the quantities of the resources required for trading goods depend on the
quantities of the traded goods. Furthermore, our considerations in the introductory
section suggest that good networks can reduce the input quantities that are sacrificed
for trading goods (xT D). We assume that the following set of (implicit) functions
indicates the input quantities that are required for trading goods (xT D):

xT D
i = gi(xOBS,y,z,v) ∀ i, (4)

where xOBS = xPD + xIN + xT D and y are the traded input and output quantities, re-
spectively, z is—again—the vector of network parameters and v is a vector of other
factors that might influence the resources required to trade the goods (e.g. hetero-
geneity of goods, distance to potential sellers and buyers).

In the following, we derive an augmented production function that only takes into
account the observable input variables (xOBS). We start by substituting xOBS

i −xobs
i for

xT D and f ∗(xobs,z,u) for y in the set of equations (4) so that after rearranging we get:

xobs
i = xOBS

i −gi(xOBS, f ∗(xobs,z,u),z,v) ∀ i. (5)

By defining a set of functions g∗i (xOBS,xobs,z,u,v)≡ xOBS
i −gi(xOBS, f ∗(xobs,z,u),z,v)

∀ i, we can rewrite the set of equations (5) to get a system of implicit functions for
xobs:

xobs
i = g∗i (x

OBS,xobs,z,u,v) ∀ i. (6)

Then, we solve this system of implicit equations for xobs. We denote the resulting set
of equations by:

xobs
i ≡ hi(xOBS,z,u,v) ∀ i. (7)

Substituting these functions for xobs in (3), we get

y = f ∗(h(xOBS,z,u,v),z,u)≡ f ∗∗(xOBS,z,u,v), (8)

where xOBS = xPD + xIN + xT D corresponds to the input quantities that are usually
observed in data sets used for empirical production analysis. Hence, the augmented
production function f ∗∗(xOBS,z,u,v) not only includes the production process, but
also the trading of goods and activities to improve the productivity of production ac-
tivities. As we assume that firms with better networks need less resources for trading

5 Of course, some elements of xT D might be zero (e.g. raw materials).
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goods and can improve the productivity of their production activities more easily and
at less cost (see discussion in the introductory section), these firms should be able to
produce the same amount of output (y) with smaller (total) input quantities (xOBS).

In order to empirically estimate the augmented production function f ∗∗(xOBS,z,u,v),
we express the output and input quantities in equation (8) in logarithms and add an
error term, ε , that accounts for unobserved factors:

logy = f ∗∗∗(logxOBS,z,u,v)+ ε. (9)

3 Data

In our empirical analysis, we use a cross-sectional dataset of 384 Polish farms. The
data were collected in 2007 within the framework of the “Advanced-Eval” project fi-
nanced by the European Union within the Sixth Framework Programme. The dataset
includes detailed farm accountancy data from 2006 and information on the farms’
ego-centred networks. We take the total value of all produced goods as output (in
Złoty) and we distinguish between four inputs: labour (in working hours), land (in
ha), capital (in Złoty), and intermediate inputs (in Złoty), where the intermediate
inputs mainly consist of seeds, fertilisers, pesticides, purchased feed, fuel, and elec-
tricity.

Since Polish farms usually have a single farm manager, we do not have to model
intra-firm networks, which can play an important role in information diffusion. Hence,
our dataset has the advantage that we can neglect intra-firm networks when modelling
networks.

The network data are collected through four different name generators6 (Burt,
1984): trade network, information exchange network, social network, and farm-house-
hold network. To sample the trade network, we asked the farmer to name the most
important trade partners on output as well as input markets; to sample the information
network, we asked for the most important contacts with whom the farmer exchanges
information on innovations or other important aspects of the business; to sample the
social network, we asked for the contacts within the farmer’s business network that
were closer than mere business relations; finally, to sample the farm-household net-
work we asked for the contacts that are mainly non-business related, like close family
friends or contacts in unions and clubs. Of course, for some observations, the overlap
between the networks can be considerable.

We apply two common network parameters for ego-centred networks to model
the structure of each of the four farm networks, namely the number of outdegrees
and the density of the network. The first network parameter refers to the total number
of contacts (alteri) n that an ego—in our case the farm—has. The second network
parameter, density, describes the degree of interconnectedness between ego’s alteri,
h
/
[m(m−1)/2] , where h is the actual number of ties between the alteri and m(m−

1)/2 is the number of possible ties. Given the structure of ego-centred networks, the
amount of structural information that can be derived is limited compared to what can

6 Name generators are a sampling technique to map ego-centred networks through a battery of ques-
tions, e.g., ‘Whom do you contact when looking for a job’ or ‘Name your most important trade partners’.
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be ascertained from full network samples. However, the geographic distribution of the
sampled farms prevented the sampling of a full network for our study. Furthermore,
sampling ego-centred networks with a name generator tends to elicit strong ties7 (Lin,
1999), which might affect the structural measures; this should be kept in mind when
interpreting the results.

The variables that might affect the productivity of the firm’s production activities
or the resources that the firm needs to improve its productivity (u) or that might influ-
ence the resources required to trade the goods (v) include the region in which the farm
is located as well as management characteristics, namely the farmer’s level of educa-
tion, work experience (in years) and attitude to risk. The latter is the average response
to several lottery questions for assessing risk attitude, where larger positive values in-
dicate higher risk aversion. Our data include farms from four different municipalities
(Gminas). The municipalities Chotcza and Wieliszew are located close to urban areas,
while Siemiątkowo and Kamieniec are located in remote areas. While Wieliszew and
Kamieniec perform well economically, Chotcza and Siemiątkowo’s economic per-
formance is weak. Hence, the four municipalities cover all possible combinations of
location and economic performance. Of course, this regional variable also accounts
for differences in climate and soil, but we cannot differentiate between these effects.
Whilst a separation of these effects would be interesting, it is not essential for our
study. Descriptive statistics of the data set are given in Table 1.

4 Econometric Specification

If our considerations about transaction costs and networks are correct and we use
a typical data set, where the input quantities include resources used for the produc-
tion (xPD), resources used to improve the productivity of production activities (xIN),
and resources used for trading goods (xT D), the production function should not only
depend on the input quantities, but also on the firm’s network position. Hence, we can
test the hypothesis that networks influence transaction costs by estimating the aug-
mented production function logy = f ∗∗∗(logxOBS,z,u,v) defined in (9) and testing if
the network parameters z have a significant influence.

Given our microeconomic model derived above, the relationship between the to-
tal input quantities xOBS, the network parameters z, the other factors u and v, and
the output quantity y is unknown and could be rather complex. To minimise the risk
that our results depend on an unsuitable econometric specification, we estimate this
augmented production function with different parametric, semiparametric, and non-
parametric specifications of the regression function. While the parametric estimations
may suffer from an unsuitable parametric specification, the fully nonparametric esti-
mations may suffer from the curse of dimensionality. The semiparametric specifica-
tions take a middle ground between the fully parametric and the fully nonparametric
specifications. We use the following model specifications:

7 Strong ties are contacts that interact closely and frequently. An over-representation of strong ties in
the sample can eventually lead to denser networks.
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Table 1: Descriptive statistics

variable n mean std dev median min max

output 384 36083.60 45645.82 18150.00 240.00 323500.00
log(output) 384 9.79 1.30 9.81 5.48 12.69
labour 384 6402.36 8296.19 5305.25 704.00 99360.00
log(labour) 384 8.53 0.62 8.58 6.56 11.51
land 384 11.80 10.15 9.89 0.30 80.00
log(land) 384 2.15 0.84 2.29 -1.20 4.38
capital 384 323482.16 411592.21 188000.00 7500.00 3150000.00
log(capital) 384 12.15 1.05 12.14 8.92 14.96
intermed 384 41238.64 137703.93 15507.14 670.00 2515288.21
log(intermed) 384 9.79 1.14 9.65 6.51 14.70
municip 384

Chotcza 109
Kamieniec 99
Siemiątkowo 75
Wieliszew 101

exper 384 24.94 12.00 24.00 1.00 79.00
education 374

none 151
apprenticeship 92
vocational school 129
university 2

risk 384 -0.06 0.75 0.09 -2.04 1.34
outd Trade 384 3.54 1.42 3.00 0.00 9.00
dens Trade 384 0.35 0.29 0.42 0.00 1.00
outd Inf 384 0.26 0.61 0.00 0.00 4.00
dens Inf 384 0.02 0.13 0.00 0.00 1.00
outd Soc 384 0.14 0.45 0.00 0.00 3.00
dens Soc 384 0.02 0.15 0.00 0.00 1.00
outd HH 384 3.24 1.40 3.00 2.00 8.00
dens HH 384 0.47 0.43 0.50 0.00 1.00

Note: variable “output” indicates the aggregate output quantity measured in Złoty (PLN); “labour” in-
dicates the total on-farm labour measured in hours/year; variable “land” is the farm’s total utilised agri-
cultural land area measured in ha; “capital” indicates the farm’s capital stock measured in Złoty (PLN);
“intermed” indicates the farm’s use of intermediate inputs (e.g. feed, fertiliser, pesticides, fuel) measured
in Złoty (PLN); “municip” indicates the municipality, in which the farm is located; “exper” indicates the
farmer’s farming experience in years; “education” indicates the farmer’s agricultural education; “risk”
indicates the farmer’s attitude to risk, where larger positive values indicate higher risk aversion; the abbre-
viations “outd” and “dens” indicate the number of outdegrees and the density of the network, respectively,
where “Trade,” “Inf,” “Soc,” and “HH” indicate the firm’s trade network, the firm’s information network,
the firm’s social network, and the network of the corresponding household, respectively.

– Parametric specifications: Ordinary Least-Squares estimations of Cobb-Douglas
and Translog production functions with location, management characteristics,
and the network variables as additional (linearly modelled) explanatory variables.

– Semiparametric specifications: additive categorical regression spline models,
where the continuous explanatory variables, i.e. input quantities, experience, risk
attitudes, and the network variables, are modelled with B-splines and the categor-
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ical explanatory variables, i.e. location and education, are modelled with kernel
smoothing (Ma et al, 2012; Ma and Racine, 2012).8

– Nonparametric specifications: local-linear kernel estimations using the estima-
tion method for both continuous and categorical explanatory variables (Li and
Racine, 2004; Racine and Li, 2004).

We use the kernel proposed by Li and Racine (2004) for the unordered categor-
ical explanatory variable, i.e. location, while the kernel proposed by Racine and Li
(2004) is used for the ordered categorical explanatory variable, i.e. education, both
in the semiparametric and in the nonparametric models.9 The second-order Epanech-
nikov kernel is used for all continuous regressors in the nonparametric models. We
make the frequently used assumption that the bandwidths of the kernels can differ
between regressors, but are constant over the domain of each regressor. The optimal
degree of smoothing—i.e. the optimal degrees and the optimal numbers of segments
of the splines for the continuous explanatory variables and the optimal bandwidths
for the categorical explanatory variables in the semiparametric models and the opti-
mal bandwidths for the continuous and the categorical explanatory variables in the
nonparametric models—is selected either by using least-squares leave-one-out cross-
validation or according to the expected Kullback-Leibler criterion (Hurvich et al,
1998).

In the additive categorical regression spline models, we test the statistical signif-
icance of the explanatory variables with the significance test suggested by Ma and

8 We also estimated other semiparametric models, but they were less suitable for our empirical appli-
cation. For instance, we estimated smooth coefficient models, where the input quantities were modelled
in parametric (Cobb-Douglas) form and the coefficients were allowed to vary based on location, educa-
tion, experience, risk attitudes, and network parameters—and in some models also on the (logarithmic)
input quantities in order to allow for the same flexibility in input quantities as a Translog production func-
tion. Unfortunately, our data set does not have a sufficient number of observations to obtain reasonable
estimation results from this specification. Even in a fully parametric specification with a Cobb-Douglas
production function, where the five smooth coefficients (intercept and the slope coefficients of the four
logarithmic input quantities) are linear functions of the three location dummies, three education dummies,
experience, risk attitudes, and eight network parameters, the model has 85 coefficients. Allowing for the
same flexibility in input quantities as a Translog production function would require 16 additional coeffi-
cients. Modelling the smooth coefficients with a non-parametric approach further aggravates this problem.
Therefore, a smooth coefficient model is unsuitable for our empirical application.
Furthermore, we estimated various partially linear models, where the (logarithmic) input quantities were
modelled linearly (i.e. assuming a Cobb-Douglas functional form). These models had an extremely poor
out-of-sample predictive performance (based on the procedure described in Section 5.2), which may not
be surprising, as the results of most other models show that the effects of the (logarithmic) input quantities
are nonlinear (see Section 5.1).
Finally, we estimated various partially linear models, where the network variables were modelled linearly,
while the input quantities and the other explanatory variables were modelled nonparametrically. The results
of these models were mostly similar to the results of the models that we present in Section 5. However, as
these models are unable to detect nonlinearities in the effects of the network variables, we do not present
the results of these models.

9 While the kernels for ordered categorical variables of Wang and van Ryzin (1981) and Racine and Li
(2004) are clearly different, the kernels for unordered categorical variables of Aitchison and Aitken (1976)
and Li and Racine (2004) have exactly the same shape, but a different specification of the bandwidth
parameter so that the choice between the kernels for unordered categorical variables does not make a
difference if the bandwidth parameters are appropriately adjusted, e.g. by data-driven bandwidth selection
(Czekaj and Henningsen, 2013).
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Racine (2011), which is analogous to a simple t-test in a parametric regression set-
ting, but which obtains the distribution of the test statistic under the null hypothesis by
the ‘residual’ bootstrap method using independent identically distributed (iid) draws.

In the nonparametric models, we test the statistical significance of the regressors
with the nonparametric test for irrelevant regressors that was initially suggested by
Racine (1997) and later extended to categorical regressors by Racine et al (2006).
This test checks if the sum (over all observations) of the squared (marginal) effects
of a specific regressor on the dependent variable is significantly larger than zero,
where the distribution of the test statistic under the null hypothesis is obtained by the
bootstrap method using independent identically distributed (iid) draws.

In all semiparametric and nonparametric estimations, we take the logarithm of
the output and all the input quantities. This makes it easier to compare the semipara-
metric and the nonparametric estimations with the parametric estimations, because
the Cobb-Douglas and Translog functional forms also use logarithmic output and
input quantities. Furthermore, the individual values of the logarithmic variables are
more equally distributed within the range of observed values than the original (non-
logarithmic) values. If we used original (non-logarithmic) input quantities in our data
set, there would be many observations within the bandwidths for small values (farms),
but very few observations within the bandwidth for large values (farms), which usu-
ally causes problems in nonparametric regression with fixed (constant) bandwidths.
Finally, the unknown true augmented production function is probably more simi-
lar to a log-linear (Cobb-Douglas) function than to a linear function (which implies
perfect substitutability between inputs) so that the use of a local-log-linear (local-
Cobb-Douglas) specification using logarithmic quantities of the inputs and the out-
put converges faster to the true augmented production function than a local-linear
specification using original (non-logarithmic) quantities of the inputs and the output
(Czekaj and Henningsen, 2013).

5 Results

All estimations were performed within the statistical software environment “R” (R
Core Team, 2014) using the add-on packages “crs” (Nie and Racine, 2012) and “np”
(Hayfield and Racine, 2008).

Initially, our model also included the farmer’s education and his or her risk atti-
tudes as explanatory variables, but we removed these explanatory variables, because
they do not have a statistically significant effect in any of the estimated models.10

5.1 Degrees and segments of splines, bandwidths, and statistical significance

Table 2 presents the degrees and the numbers of segments of the splines and the band-
widths of the kernels for the explanatory variables that we obtained by least-squares
cross-validation or according to the expected Kullback-Leibler criterion (Hurvich

10 We were not able to test the statistical significance in the additive categorical regression spline models
due to high multicollinearity.
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Table 2: Degrees and segments of splines, bandwidths, and statistical significance

labor land capital intermed municip exper
models with all explanatory variables
OLS CD ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗

OLS TL ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗

ACRS LS 6/1∗∗∗ 2/1∗∗∗ 6/1∗∗∗ 3/2∗∗∗ 0.41∗∗∗ 6/1∗∗∗

ACRS AIC 4/2∗∗∗ 3/1∗∗∗ 5/1∗∗∗ 4/1∗∗∗ 0.21∗∗∗ 3/3∗∗∗

NP LS ∞∗∗∗ ∞∗∗∗ ∞∗∗∗ ∞∗∗∗ 0.30∗∗ ∞∗

NP AIC ∞∗∗∗ ∞∗∗∗ ∞∗∗∗ ∞∗∗∗ 0.33∗∗ ∞∗

models with fewer explanatory variables
OLS CD ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗

OLS TL ∗∗∗ ∗∗∗ ∗ ∗∗∗ ∗∗∗ ∗

ACRS LS 6/1∗∗∗ 2/1∗∗∗ 6/1∗∗∗ 3/2∗∗∗ 0.45∗∗∗ 1/3∗∗

ACRS AIC 4/2∗∗∗ 1/1∗∗∗ 5/1∗∗∗ 4/1∗∗∗ 0.21∗∗∗ 3/3∗∗∗

NP LS 0.94∗∗∗ 0.88∗∗∗ 0.93∗∗∗ 1.42∗∗∗ 0.21∗∗∗ 26.39∗∗

NP AIC 0.92∗∗∗ 1.38∗∗∗ 1.03∗∗∗ 1.35∗∗∗ 0.17∗∗∗ 27.73∗∗

outd Trade dens Trade outd Inf dens Inf outd Soc dens Soc outd HH dens HH
models with all explanatory variables
OLS CD ∗∗∗ ∗∗∗

OLS TL ∗∗∗ ∗∗∗

ACRS LS 1/1∗∗∗ 0/1∗ 0/1 4/1 0/1 1/1∗ 0/1 1/1∗∗∗

ACRS AIC 1/1∗∗∗ 1/1∗ 0/1 0/1 0/1 0/1 0/1 1/1∗∗

NP LS ∞∗∗∗ ∞∗∗ ∞ ∞∗ ∞ ∞ ∞ ∞∗∗∗

NP AIC ∞∗∗∗ ∞∗∗ ∞ ∞∗ ∞ ∞ ∞ ∞∗∗∗

models with fewer explanatory variables
OLS CD ∗∗∗ — — — — — ∗∗∗

OLS TL ∗∗∗ — — — — — ∗∗∗

ACRS LS 4/1∗∗∗ 1/1∗∗ — — — — — 4/1∗∗∗

ACRS AIC 1/1∗∗∗ 1/1∗∗ — — — — — 1/1∗∗

NP LS 4.98∗∗∗ ∞∗∗∗ — — — — — ∞∗∗∗

NP AIC ∞∗∗∗ ∞∗∗∗ — — — — — ∞∗∗∗

Note: in the upper panel, the first four columns indicate the degrees and segments of the splines or the
bandwidths for the four logarithmic input quantities (labour, land, capital, intermediate inputs); column
“municip” indicates the bandwidths for the location variable, and column “exper” indicates the degrees
and segments of the splines or the bandwidths for the experience (in years). The lower panel indicates
the degrees and segments of the splines or the bandwidths for the network variables (see explanations
below Table 1). The abbreviations “CD OLS” and “TL OLS” indicate the Cobb-Douglas and Translog
functional forms estimated by OLS; “ACRS” indicates additive categorical regression spline models
and “NP” indicates a fully nonparametric local-linear model, where the additions “LS” and “AIC”
indicate selection of the degrees and segments of the splines and the bandwidths of the kernels by
least-squares cross-validation and according to the expected Kullback-Leibler criterion (Hurvich et al,
1998), respectively. In the rows for the additive categorical regression spline (ACRS) models, the first
value indicates the degree of the spline and the second value indicates the number of segments; The
infinity symbol (∞) indicates that the bandwidth that was chosen by the bandwidth selection procedure is
at least 5 times as large as the standard deviation of the corresponding variable. A dash (—) indicates that
the explanatory variable is not included in the model. Asterisks indicate the statistical significance of the
explanatory variables where ∗ = significant at 10%, ∗∗ = significant at 5%, and ∗∗∗ = significant at 1%.
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et al, 1998). Furthermore, this table indicates the statistical significance of the ex-
planatory variables. While the five network variables “outd Inf,” “dens Inf,” “outd Soc,”
“dens Soc,” and “dens HH” are statistically insignificant at the 5% level in all six
model specifications, all other explanatory variables are statistically significant at the
5% level in at least two model specifications.11 Therefore, we re-estimated all six
model specifications without the five insignificant network variables. In these smaller
models, all explanatory variables are statistically significant at the 5% level in at least
four out of the six model specifications.

The degrees and the numbers of segments of the splines in the additive categori-
cal regression spline models (ACRS) allow for nonlinearities in nearly all logarithmic
input quantities and the farmer’s experience, while the effects of most network vari-
ables are either linear (one segment with degree one) or absent (one segment with
degree zero). However, the least-squares cross-validation of the smaller ACRS model
indicates that the effect of the outdegrees of the trade network (“outd Trade”) and the
density of the household network (“dens HH”) are nonlinear.

In the nonparametric models (NP) with all explanatory variables, the bandwidths
of all continuous explanatory variables are at least 5 times as large as their standard
deviations so that these two models are linear in all continuous explanatory vari-
ables.12 These large bandwidths are at least to some extent caused by the curse of
dimensionality, because the large number of explanatory variables (13 continuous
and one categorical explanatory variable) and the relatively small number of obser-
vations (384) make it difficult to detect nonlinearities in a local-linear estimation.
After removing the five insignificant network variables, the bandwidths for the input
quantities are all in the order of magnitude of their standard deviations, which allows
for nonlinearities in the input variables. The bandwidths for experience in these two
models are about twice the standard deviation of this variable, which allows for mod-
erate linearity in experience. The bandwidths of all three remaining network variables
are all at least 3.5 times as large as their standard deviations so that these two models
are (nearly) linear in all network variables.

In all specifications of the additive categorical regression spline models (ACRS)
and in the nonparametric models (NP), the bandwidth of the location (municipality) is
clearly smaller than one, which indicates that the location has a noticeable influence
on the augmented production function.

11 The five individually insignificant network variables are also jointly insignificant in the OLS Cobb-
Douglas model (P-value 0.145), in the OLS Translog model (P-value 0.255), in the nonparametric model
with bandwidths obtained by least-squares cross-validation (P-value 0.189), and in the nonparametric
model with bandwidths obtained according to the expected Kullback-Leibler criterion (P-value 0.180).
We have not tested the joint significance in the ACRS models, because this feature is not yet available in
the “crs” package.

12 However, in contrast to a parametric linear regression (e.g. OLS), our nonparametric regression with
large bandwidths still allows the marginal effects of the explanatory variables to differ between observa-
tions. In fact, each nonparametric estimation is similar to four linear (Cobb-Douglas) estimations for the
four municipalities, where the estimation for each municipality also takes into account the observations of
the three other municipalities using weights equal to the bandwidth of the location variable.



14 G. Henningsen, A. Henningsen, C.H.C.A. Henning

5.2 Evaluation of model specifications

In this section, we discuss, which model specification is the most suitable. Table 3
presents the P-values from specification tests of the parametric models. When com-
paring the parametric specifications, likelihood ratio tests clearly reject the Cobb-
Douglas functional form in favour of the Translog production function. However,
both the Cobb-Douglas and the Translog specifications are rejected by Ramsey’s
(1969) Regression Equation Specification Error Test (RESET) and by Hsiao et al’s
(2007) kernel-based specification test against the local-constant specification. These
specification tests create some doubt about the suitability of the parametric specifica-
tions.

Table 3: Specification tests of the parametric models (P-values)

Translog RESET NP LC NP LL
models with all explanatory variables
OLS CD 0.006 0.040 0.010 0.383
OLS TL 0.022 0.003 0.000
models with fewer explanatory variables
OLS CD 0.003 0.035 0.003 0.336
OLS TL 0.016 0.005 0.749

Note: column “Translog” presents the P-values of likelihood ratio tests of the Cobb-Douglas models
against the corresponding Translog models; column “RESET” presents the P-values of Ramsey’s (1969)
Regression Equation Specification Error Test (RESET) with squared and cubic fitted values as additional
explanatory variables; columns “NP LC” and “NP LL” present the P-values from the kernel-based spec-
ification test of Hsiao et al (2007) against local-constant and local-linear alternatives, respectively, where
we use the same kernel functions as in the nonparametric specifications, select the bandwidths by least-
squares cross validation, and estimate the distribution under the null hypothesis by the bootstrap method
with independent identically distributed (iid) draws.

In order to evaluate the semiparametric and nonparametric model specifications
and to compare them with each other and the parametric specifications, we use the
‘test for revealed performance’ proposed by Racine and Parmeter (2014). This test
assesses how close the different model specifications are expected to lie to the un-
known ‘true’ data generating process. For the convenience of the reader, we briefly
summarise the procedure here, while we refer the reader to Racine and Parmeter
(2014) for a detailed description, the statistical background, and proofs:

1. All model specifications are estimated using data-driven methods to select the
degrees and numbers of segments of the splines and the bandwidths of the kernels
(see Section 5.1).

2. We randomly split our sample into two independent subsamples with sizes n1 and
n2, respectively, where n1 +n2 = n = 384 is our total sample size.

3. We use the n1 observations in the first subsample to re-estimate all model speci-
fications using the same degrees and numbers of segments of the splines and the
same degree of kernel smoothing as in step 1, i.e. the bandwidths of the kernel
functions are adjusted to the smaller sample size and the different spreading of
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the variables in the subsample so that the scaling factors are the same as in the
model for the full sample.13

4. The models estimated with the first subsample and the explanatory variables of
the n2 observations in the second subsample are used to predict the values of the
dependent variable in the second subsample.

5. The out-of-sample predictive performance of each model specification is eval-
uated by calculating the average squared prediction error (ASPE) with ASPE
= n−1

2 ∑
n
j=n1+1(ŷ j − y j)

2, where ŷ j; j = n1 + 1, . . . ,n are the values of the de-
pendent variable predicted by a model that was estimated without observations
j = n j + j, . . . ,n.

6. We repeat steps two to five 5,000 times and use the obtained ASPEs to construct
the empirical distribution function of the variance of the expected true error for
each model specification.

7. We compare the distributions of the ASPEs for the different model specifications.

Table 4 presents and compares the ASPEs of the estimated model specifications
for evaluation samples of sizes n2 = 5, n2 = 25, and n2 = 50. The OLS Cobb-Douglas
model with all explanatory variables is the best performing parametric model for
all three evaluation sample sizes, although it includes several statistically insignif-
icant regressors and the Cobb-Douglas model was clearly rejected in favour of the
Translog model. While the nonparametric models NP LS and NP AIC with all ex-
planatory variables and the two ACRS AIC models clearly perform worse than the
best parametric model, the nonparametric models NP LS and NP AIC with fewer
explanatory variables and the two ACRS LS models outperform the best parametric
model in three to five out of the six performance measures. According to the tests
proposed by Racine and Parmeter (2014), the two ACRS LS models clearly have the
best predictive performance, where the ACRS LS model with all explanatory vari-
ables has the lowest ASPE according to three test criteria and the ACRS LS model
with fewer explanatory variables has the lowest ASPE according to two test criteria.

5.3 Effects of the explanatory variables on output

The median values of the marginal effects (gradients) of the explanatory variables on
the (logarithmic) output quantity obtained by the 12 different model specifications are
presented in Table 5. This table also shows the marginal significance levels (P-values)
of the explanatory variables that we already presented in Table 2. The models gener-
ally give rather similar results, which indicates that most of our estimation results are
robust to different model specifications.

The marginal effects of the logarithmic input quantities on the logarithmic output
quantity coincide with the partial production elasticities of the inputs. However, in
contrast to the classical definition of partial production elasticities, in our empirical

13 It would also be desirable to adjust the number of segments and the degrees of the spline functions,
but to our knowledge, no procedure for this exists and the number of segments and the degrees of the
spline functions must be integers so that their adjustment by the same factors as the adjustments of the
bandwidths of the kernel functions would probably in most cases not have been sufficient to adjust them
(after rounding) to the previous or next integer value.
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Table 4: Average mean prediction errors

n2 = 5 n2 = 25 n2 = 50
mean trimmed mean mean trimmed mean mean trimmed mean

models with all explanatory variables
OLS CD 0.714 0.616 0.718 0.685 0.718 0.696
OLS TL 0.733∗∗∗ 0.622 0.733∗∗∗ 0.695∗∗ 0.736∗∗∗ 0.711∗∗∗

ACRS LS 0.663∗∗∗ 0.578∗∗∗ 0.707 0.652∗∗∗ 1.288∗ 0.686∗∗∗
ACRS AIC 0.736∗∗∗ 0.623 0.752∗∗∗ 0.704∗∗∗ 0.774∗∗∗ 0.734∗∗∗

NP LS 0.731∗∗∗ 0.631∗∗ 0.734∗∗∗ 0.701∗∗∗ 0.733∗∗∗ 0.712∗∗∗

NP AIC 0.731∗∗∗ 0.631∗∗ 0.734∗∗∗ 0.701∗∗∗ 0.733∗∗∗ 0.712∗∗∗

models with fewer explanatory variables
OLS CD 0.718∗∗∗ 0.619 0.720∗∗∗ 0.687 0.720∗∗∗ 0.698
OLS TL 0.734∗∗∗ 0.621 0.733∗∗∗ 0.695∗∗ 0.736∗∗∗ 0.711∗∗∗

ACRS LS 0.670∗∗∗ 0.589∗∗∗ 0.687∗∗∗ 0.657∗∗∗ 0.971 0.679∗∗∗
ACRS AIC 0.745∗∗∗ 0.623 0.758∗∗∗ 0.706∗∗∗ 0.777∗∗∗ 0.734∗∗∗

NP LS 0.686∗∗∗ 0.586∗∗∗ 0.716 0.668∗∗∗ 8.086∗ 0.694
NP AIC 0.709∗∗ 0.599∗∗ 0.722 0.679∗ 6.001∗ 0.700

Notes: The values in the “mean” columns indicate the mean ASPEs over all 5,000 replications; the values
in the “trimmed mean” columns indicate the mean ASPEs after removing the 5% of the replications with
the largest ASPEs. Asterisks indicate the results of one-sided t-tests for the equality of the (trimmed)
mean ASPE of each model specification with the (trimmed) mean ASPE of the best performing parametric
model, i.e. the OLS Cobb-Douglas model with all explanatory variables, where ∗ = significant at 10%, ∗∗

= significant at 5%, and ∗∗∗ = significant at 1%. The mean values are compared by paired t-tests, while
the trimmed mean values are compared by non-paired t-tests (allowing for different variances in the
ASPEs of the two compared model specifications), because in the different model specifications, different
replications are ‘trimmed’. If the (trimmed) mean value of a model specification is less [greater] than the
(trimmed) mean value of the OLS Cobb-Douglas model with all explanatory variables, the alternative of
the one-sided t-test is that the (trimmed) mean value of this model specification is less [greater] than the
(trimmed) mean value of the OLS Cobb-Douglas model with all explanatory variables and the significance
level is indicated in a subscript [superscript]. The abbreviations of the model specifications are the same
as in Table 2.

application (and in most other empirical applications as well), the estimated partial
production elasticities not only take into account the actual production process, but
also activities for improving productivity and trading goods. The estimation results of
all of our models indicate that intermediate inputs have the largest partial production
elasticity, while land and capital have the lowest partial production elasticities.

All models indicate that farmers in Kamieniec and Wieliszew can produce much
more output with the same amount of resources (for improving productivity, trading
goods, and producing outputs) than farmers in Chotcza and Siemiątkowo.14 How-
ever, the estimated size of the difference between the municipalities clearly differs
between models: the estimated productivity differences are generally much larger in
the parametric models (OLS) than in the semiparametric models (ACRS) and the
nonparametric models (NP).

All models indicate that the median effect of the farmer’s experience (exper) on
productivity is negative. However, the four ACRS models indicate that the effect of

14 Please note that in the ACRS and NP models, the significance levels refer to the significance of
the location variable, not to the significance of the effect of the individual municipalities. Thus, for these
models, a significance symbol for Siemiątkowo does not mean that the productivity significantly differs
between Siemiątkowo and Chotcza, but that there are significant productivity differences between at least
two municipalities.
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Table 5: Median effects of explanatory variables on output

labor land capital intermed kami siem wiel exper
models with all explanatory variables
OLS CD 0.291∗∗∗ 0.276∗∗∗ 0.165∗∗∗ 0.395∗∗∗ 0.605∗∗∗ 0.143 0.380∗∗∗ -0.006∗

OLS TL 0.244∗∗∗ 0.272∗∗∗ 0.130 0.442∗∗∗ 0.615∗∗∗ 0.138 0.457∗∗∗ -0.007∗∗

ACRS LS 0.427∗∗∗ 0.160∗∗∗ 0.304∗∗∗ 0.492∗∗∗ 0.097∗∗∗ -0.024∗∗∗ 0.175∗∗∗ -0.003∗∗∗

ACRS AIC 0.371∗∗∗ 0.168∗∗∗ 0.235∗∗∗ 0.479∗∗∗ 0.167∗∗∗ -0.072∗∗∗ 0.236∗∗∗ -0.007∗∗∗

NP LS 0.288∗∗∗ 0.216∗∗∗ 0.211∗∗∗ 0.437∗∗∗ 0.239∗∗ -0.011∗∗ 0.105∗∗ -0.008∗

NP AIC 0.286∗∗∗ 0.217∗∗∗ 0.215∗∗∗ 0.436∗∗∗ 0.222∗∗ -0.011∗∗ 0.097∗∗ -0.008∗

models with fewer explanatory variables
OLS CD 0.284∗∗∗ 0.278∗∗∗ 0.170∗∗∗ 0.396∗∗∗ 0.602∗∗∗ 0.131 0.404∗∗∗ -0.007∗

OLS TL 0.235∗∗∗ 0.282∗∗∗ 0.137∗ 0.460∗∗∗ 0.609∗∗∗ 0.129 0.485∗∗∗ -0.007∗

ACRS LS 0.366∗∗∗ 0.195∗∗∗ 0.310∗∗∗ 0.470∗∗∗ 0.108∗∗∗ -0.041∗∗∗ 0.090∗∗∗ -0.012∗∗

ACRS AIC 0.379∗∗∗ 0.245∗∗∗ 0.235∗∗∗ 0.448∗∗∗ 0.192∗∗∗ -0.066∗∗∗ 0.229∗∗∗ -0.008∗∗∗

NP LS 0.312∗∗∗ 0.294∗∗∗ 0.240∗∗∗ 0.437∗∗∗ 0.219∗∗∗ -0.042∗∗∗ 0.168∗∗∗ -0.008∗∗

NP AIC 0.303∗∗∗ 0.284∗∗∗ 0.249∗∗∗ 0.436∗∗∗ 0.276∗∗∗ -0.029∗∗∗ 0.239∗∗∗ -0.008∗∗

outd Trade dens Trade outd Inf dens Inf outd Soc dens Soc outd HH dens HH
models with all explanatory variables
OLS CD 0.146∗∗∗ 0.200 0.035 0.678 -0.040 -0.365 0.046 0.329∗∗∗

OLS TL 0.136∗∗∗ 0.207 0.056 0.459 -0.014 -0.407 0.041 0.327∗∗∗

ACRS LS 0.162∗∗∗ 0.000∗ 0.000 -0.388 0.000 -0.625∗ 0.000 0.318∗∗∗

ACRS AIC 0.162∗∗∗ 0.469∗ 0.000 0.000 0.000 0.000 0.000 0.270∗∗

NP LS 0.161∗∗∗ 0.451∗∗ 0.016 0.706∗ -0.111 -0.467 0.044 0.395∗∗∗

NP AIC 0.160∗∗∗ 0.444∗∗ 0.017 0.716∗ -0.111 -0.466 0.043 0.396∗∗∗

models with fewer explanatory variables
OLS CD 0.148∗∗∗ 0.229 0.316∗∗∗

OLS TL 0.138∗∗∗ 0.233 0.314∗∗∗

ACRS LS 0.175∗∗∗ 0.436∗∗ 0.732∗∗∗

ACRS AIC 0.163∗∗∗ 0.472∗∗ 0.265∗∗

NP LS 0.114∗∗∗ 0.484∗∗∗ 0.281∗∗∗

NP AIC 0.115∗∗∗ 0.484∗∗∗ 0.270∗∗∗

Note: the columns of the four inputs (labour, land, capital, intermediate inputs) indicate the median
values of their partial production elasticities; columns “kami,” “siem,” and “wiel” indicate the median
differences in the logarithmic output of the municipalities Kamieniec, Siemiątkowo, and Wieliszew,
respectively, compared to the municipality Chotcza (ceteris paribus); column “exper” indicates the
median semi-elasticities of the experience (in years) on the (logarithmic) output. The abbreviations of
the network variables are described below Table 1; the columns of these network variables indicate their
median semi-elasticities on the (logarithmic) output. The abbreviations of the model specifications are
explained below Table 2. Asterisks indicate the statistical significance of the corresponding variables (not
the statistical significance of the median effects), where ∗ = significant at 10%, ∗∗ = significant at 5%, and
∗∗∗ = significant at 1%.

experience is positive for many farmers with between 15 and 30 years’ experience,
but is mostly negative for farmers with less or more experience.

As management characteristics (exper) and the location of the farm (municip) are
included both in vector v and in vector u, the above-mentioned total effects of these
variables comprise their direct effect on the productivity of the production process
(∂T/∂u), their effect through resources required to improve the productivity of pro-
duction activities (∂ (∂T/∂xIN)/∂u), and their effect on resources required for trade
(∂xT D/∂v).
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The estimated effects of the network parameters are mostly consistent between
model specifications: the estimation results of all models agree that the number of
outdegrees of the trading network of the farm (outd Trade) and the density of the
household network (dens HH) have a rather large positive and highly statistically
significant effect on the productivity. According to most models, an additional trad-
ing partner increases the farm output by around 15%, while increasing the density
of the household network from zero (a totally loose network without any connection
between the alteri) to one (a totally dense network with all alteri connected) would
increase the output on average by 30–40%.15 While most models indicate a linear
effect of these two network variables, model ACRS LS with fewer explanatory vari-
ables indicates nonlinear effects. However, in this model, the effect of the outdegrees
of the trade network (outd Trade) is nearly linear for two or more trading partners,
whereas negative effects can only be observed for a very few observations with less
than two trading partners. Furthermore, this model indicates considerable nonlineari-
ties in the density of the household network (dens HH) with highest productivities at
densities of around 0.15 and 0.9 and lowest productivities at a density of around 0.5.
However, these nonlinearities are only based on about one third of the observations,
because about two thirds of the observations have a density of either zero or one and
thus, do not directly affect the shape of the regression line between the minimum and
the maximum of this variable. Hence, also in model ACRS LS with fewer explanatory
variables, there is only weak evidence for nonlinear effects of network variables.

Several models indicate that the density of the trading network of the farm (dens Trade)
also has a significant positive effect on productivity, but the estimated size of this ef-
fect varies considerably between models.

5.4 Effects of networks on the productivity ranking

To test how the exclusion of networks, as a proxy for transaction costs, affects the
productivity ranking of the farms, we compare the ranking of the residuals of the
ACRS LS specification with fewer explanatory variables16 with the ranking of the
residuals of a corresponding model that omits all network variables, i.e. we compare
the ranking of the residuals logy− f̂ ∗∗∗(logxOBS,z,u,v) with the ranking of the resid-
uals logy− ĝ(logxOBS,u,v), where f̂ ∗∗∗(logxOBS,z,u,v) is our estimated (logarith-
mic) augmented production function as defined in equation (9) and ĝ(logxOBS,u,v)
is a traditional production function estimated without network variables (z). Figure 2a
illustrates the distributions of the normalised differences, i.e. the differences between
the rankings divided by the number of farms, between the rankings of both models.
Although the differences in the ranking position are marginal or nil for many obser-

15 Please note that a gradient of β means that the effect of a change from zero to one is a change of
100 · (exp(β )−1)%, while the effect of a change from one to zero is a change of 100 · (exp(−β )−1)%,
because the dependent variable (output) is logarithmised and most of our models are (virtually) linear in
the (majority of) network parameters.

16 We did the same analysis based on the ACRS LS specification with all explanatory variables, but we
only present the analysis based on the ACRS LS specification with fewer explanatory variables, because
the resulting figures only slightly differ between the two ACRS LS specifications.
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Fig. 2: Comparison of productivity rankings
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vations, still more than a third of the observations exhibit a considerable shift in their
ranking position at the boundary areas by up to 50 percentiles.

However, as we compare the residuals from estimations of two different model
specifications, we may simply measure the effect of adding additional regressors to
the model, which may affect the residuals even though their explanatory value is
nil. To test the robustness of our findings, we repeat the exercise by comparing the
ranking of the residuals from our estimated ACRS LS model with fewer explana-
tory variables with the ranking of artificially constructed residuals from this model
when levelling out differences in the network structure. These artificially constructed
residuals are taken to be the difference between the observed output of the farm and
the predicted output at the observed input quantities with all network variables being
equal to the sample medians, i.e. we compare the ranking of the residuals logy−
f̂ ∗∗∗(logxOBS,z,u,v) with the ranking of the residuals logy− f̂ ∗∗∗(logxOBS, z̄,u,v),
where z̄ is a vector of the median values of the network variables. Figure 2b illus-
trates the distributions over the normalised differences in the ranking positions of
both models. Although the overall change is not dramatic, the variance of the differ-
ences in Figure 2b is slightly larger than in Figure 2a.

Finally, we compare the ranking of the artificially constructed residuals with the
ranking of the model estimated without network variables, i.e. we compare the rank-
ing of the residuals logy− f̂ ∗∗∗(logxOBS, z̄,u,v) with the ranking of the residuals
logy− ĝ(logxOBS,u,v). Figure 2c shows that for the majority of the observations,
the rankings only differ marginally. Hence, our results strongly indicate that omit-
ting networks, or for that matter transaction costs, distorts the observed productivity
ranking.

6 Discussion

Based on a sample of 384 Polish farms, we have analysed farm productivity under
the aspect of transactions costs. As transaction costs are usually latent variables, we
have chosen social networks as a proxy for transaction costs; earlier studies (e.g.,
Di Matteo et al, 2005; Henning et al, 2012) have shown that social networks can
reduce transaction costs by positively affecting information acquisition or trade ac-
tivities. Because the empirical relationship between structural parameters of social
networks and productivity is possibly non-linear (Stam et al, 2013; Yu and Chiu,
2013), we have chosen to apply and to compare different parametric, semiparamet-
ric, and nonparametric specifications of the regression function to measure the effect
of ego-centered farm networks on farm productivity.

The results show that social networks have a consistent and significantly positive
influence on farm productivity. In particular, large trade networks and dense house-
hold networks seem to augment farm productivity. Furthermore, our results suggest
that when transaction costs are ignored, observed productivity measures as well as
their ranking change significantly for the majority of the observations.

Our study confirms earlier findings that investigate the effect of social networks
on various measures of firm productivity (e.g., Stam et al, 2013). However, in con-
trast to Uzzi (1996) and Yu and Chiu (2013), our results generally indicate a linear
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relationship between density and productivity. In addition, our results indicate that, in
some situations, observed productivity measures may be flawed if environmental fac-
tors such as transaction costs are ignored. In the presence of transaction costs and by
applying standard production data, one may rather measure firm productivity instead
of the productivity of the production process itself. The new aspect in our findings is
that besides the firm’s ability to steer the production process, the firm’s ability to deal
with the market it is operating in also significantly affects observed firm productivity.
These findings suggest that one should interpret standard productivity measures in a
broader context, which may eventually affect the design of productivity enhancing
policies and aid projects, e.g., in developing or in transition countries.

However, some limitations are worth noting. There remains—as in many social
network applications—the question of the extent to which the network structure is
endogenously determined. In our particular case, productivity may have a positive
effect on the size of the trade network, or, more likely, a third unconsidered factor
may have a positive influence on both network size and productivity. For example,
unobserved personal traits such as openness, ambition, or a positive attitude, may
potentially influence both the number of trading partners and the productivity. How-
ever, our data set includes variables that should at least in part capture personal traits,
e.g., risk perception or education, but prove to be statistically insignificant. To finally
resolve the question of causality, a dynamic network analysis would be necessary
where networks are sampled repeatedly over time together with the other production
variables in order to derive clear information on the interplay between all measures.
Unfortunately, this option was beyond our means.

Another aspect is the limited number of structural parameters that can be derived
from ego-centred networks, and the bias towards strong ties induced by the name
generator sampling technique (Lin, 1999). To overcome these problems, future stud-
ies should limit the geographical scope to be able to sample a full network—which
might return more precise and more interesting results.

Of course, as a proxy, social networks can only inaccurately represent the true
transaction costs, hence, our results can merely indicate the impact of transaction
costs on farm productivity. In addition, social networks are only one of many factors
that can influence transaction costs at the firm level. Other factors such as market
structure or product characteristics may play an equally important or even greater
role, and could be included for reasons of comparison in future analyses. Further-
more, our research design prevents us from distinguishing the effect of social net-
works on different sources of transaction costs, like information acquisition or trade
activities. Consequently, future research should, in particular, address the quantifia-
bility of different sources of transaction costs with the aim of identifying more precise
and more accessible proxies for different sources of transaction costs. However, these
suggestions would require data that are difficult and costly to collect.
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