# Applied Production Analysis - A Dual Approach Errata 

Arne Henningsen

November 26, 2015

The book "Applied Production Analysis - A Dual Approach" by Robert G. Chambers (1988, Cambridge University Press) is my favourite textbook in applied production economics. Although it is very well written, it has a few typos that could confuse the reader. Here are the typos that I am aware of:

- page 29, first equation:

$$
x_{i}^{*}=x_{i}\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}, y\right)
$$

- page 29, second equation (eq. 1.10):

$$
y=f\left(x_{1}, \ldots, x_{i-1}, x_{i}^{*}, x_{i+1}, \ldots, x_{n}\right)
$$

- page 29, fourth equation (eq. 1.11):

$$
\frac{\partial x_{i}}{\partial x_{j}}=-\frac{\partial f / \partial x_{j}}{\partial f / \partial x_{i}}
$$

- page 31 , second equation (for $M R T S_{2,1}$ ):

$$
-\frac{f_{1}}{f_{2}}=-\frac{\alpha_{1}}{\alpha_{2}} \frac{x_{2}}{x_{1}}
$$

- page 33, second equation (eq. 1.15):

$$
\sigma_{i j}=\frac{\sum_{k} x_{k} f_{k}}{x_{i} x_{j}} \frac{F_{j i}}{F}
$$

- page 35 , first line of text:

$$
K_{i}=x_{i} f_{i} / \Sigma_{k} x_{k} f_{k}
$$

- page 35, fourth equation (eq. 1.16):

$$
\sigma_{i j}^{M}=\frac{f_{j}}{x_{i}} \frac{F_{i j}}{F}-\frac{f_{j}}{x_{j}} \frac{F_{j j}}{F}
$$

- page 35, fifth equation (eq. $1.16^{\prime}$ ):

$$
\sigma_{i j}^{M}=\frac{f_{j} x_{j}}{\sum_{k} f_{k} x_{k}}\left(\sigma_{i j}-\sigma_{j j}\right)
$$

- page 63 , second and third equation:

$$
\begin{aligned}
& x_{1}=\left(\frac{y}{A}\right)^{1 / d}\left(\frac{w_{2}}{w_{1}}\right)^{b / d}\left(\frac{a}{b}\right)^{b / d} \\
& x_{2}=\left(\frac{y}{A}\right)^{1 / d}\left(\frac{w_{1}}{w_{2}}\right)^{a / d}\left(\frac{b}{a}\right)^{a / d}
\end{aligned}
$$

- page 312, lemma 11 and below:

This lemma is correct but it might be a little unclear: in contrast to the general definition of principal minors, the first principal minor of a bordered (Hessian) matrix usually is not just the upper left (scalar) element but the upper left $2 \times 2$ matrix; accordingly, the second principal minor is the upper left $3 \times 3$ matrix, and so on.
However, the sentence below lemma 11 is incorrect, because quasi-concavity does not require that the bordered Hessian matrix is negative semi-definite. Negative semi-definiteness of a matrix does not make an exception for bordered (Hessian) matrices and - in contrast to lemma 11-requires that the upper left scalar element (first principal minor) of the matrix is non-positive, the determinant of the upper left $2 \times 2$ matrix (second principal minor) is non-negative, the determinant of the upper left $3 \times 3$ matrix (third principal minor) is non-positive, and so on.
More detailed information is available, e.g., in Chiang, Alpha C. (1984): Fundamental Methods of Mathematical Economics, Third Edition, McGraw-Hill, pages 393ff, 320, and 325f.

