# The Use of Seemingly Unrelated Regression (SUR) to Predict the Carcass Composition of Lambs

V.A.P. Cadavez<sup>1</sup>, A. Henningsen<sup>2</sup>

#### **Abstract**

The aim of this study was to develop and evaluate models for predicting the carcass composition of lambs. Forty male lambs were slaughtered and their carcasses were cooled for 24 hours. The subcutaneous fat thickness was measured between the 12th and 13th rib and the total breast bone tissue thickness was taken in the middle of the second sternebrae. The left side of carcasses was dissected into five components and the proportions of lean meat (LMP), subcutaneous fat (SFP), intermuscular fat (IFP), kidney and knob channel fat (KCFP), and bone plus remainder (BP) were obtained. Models were fitted using the seemingly unrelated regression (SUR) estimator which is novel in this area, and the results were compared to ordinary least squares (OLS) estimates. The models were validated using the *PRESS* statistic. Our results showed that the SUR estimator performed better in predicting LMP and IFP than the OLS estimator. Although objective carcass classification systems could be improved by using the SUR estimator, it has never been used before for predicting carcass composition.

Keywords: Carcass, Quality, Ordinary least squares, Seemingly unrelated regression

 ${\it Email address:} \ {\tt vcadavez@ipb.pt} \ (V.A.P.\ Cadavez)$ 

<sup>\*</sup>Mountain Research Center (CIMO), ESA - Instituto Politécnico de Bragança, Campus de Santa Apolónia, Apartado 1172, 5301-855 Bragança, Portugal

<sup>\*\*</sup>Institute of Food and Resource Economics, University of Copenhagen, Rolighedsvej 25, 1958 Frederiksberg C, Denmark

## 1. Introduction

Generally speaking, good quality carcasses should present a reduced amount of fat, but there must be enough fat to guarantee a good presentation of the carcasses and for protecting the meat during the refrigeration period. Carcasses with excess fat are undesirable, because this leads to higher production costs and compels meat traders to remove the fat before selling the meat. However, fat plays an important role in the meat sensory characteristics, and a minimum content of fat is needed in order to maximize the meat palatability (Wood, 1995; Ferguson, 2004). Thus, a carcass with an optimum composition should fetch the highest price, and whenever the carcass composition moves away from the optimum, its value should suffer depreciation.

The success of the meat industry relies on its ability to deliver meat products that satisfy the consumers' requirements (Cortez et al., 2006). Thus, an accurate system of carcasses classification is of great importance to the meat industry (Kongsro et al., 2009; Rius-Vilarrasa et al., 2009), since it is the base for fair payments to producers, as well as the communication of consumers' needs through the supply chain (Rius-Vilarrasa et al., 2009). Therefore, researchers have dedicated much effort into developing reliable prediction models of carcasses composition, and several research studies (e.g. Lambe et al., 2008; Hopkins et al., 2008; Hopkins, 2008; Cadavez, 2009) have been conducted to develop an objective system for the classification of carcasses to be applied at the slaughter-line. The results attained by Hopkins (2008) and Cadavez (2009) indicate that the lean meat proportion (LMP) of lamb carcasses can be predicted by simple models using the hot carcass weight (HCW) and fat depth measurements as explanatory variables.

A common feature of published work concerning the prediction of carcass composition is the use of single-equation models. In this approach, several independent equations are estimated separately by ordinary least squares (OLS) and the estimated parameters are used to predict the proportions of muscle, fat, and bone of carcasses. However, this assumption of independence is not supported by biological knowledge, and it is well known that carcass compositional traits are correlated both phenotypically and genotypically. As the proportions of the different carcass tissues are correlated, it is expected that the equations for predicting these will be interrelated. Hence, we can expect that the single-equation approach will be inefficient from a statistical point of view (see e.g. Judge et al., 1988).

A set of equations which share a common error structure with non-zero covariance is said to be contemporaneously correlated. Zellner (1962) developed the co-called "Seemingly Unrelated Regression" (SUR) estimator that accounts for these contemporaneous correlations and allows the p dependent variables to have different sets of explanatory variables. The SUR method estimates the parameters of all equations simultaneously, so that the parameters of each single equation also take the information provided by the other equations into account. This results in greater efficiency of the parameter estimates, because additional information is used to describe the system. These efficiency gains increase with increasing correlation among the error terms of

the different equations (Judge et al., 1988), as well as with larger sample size and higher multicollinearity between the regressors (Yahya et al., 2008). In the case of models for predicting carcass composition, the SUR method can be used to estimate all parameters of all equations simultaneously, whilst the correlations among the carcass tissues are taken into account. However, in spite of these elegant proprieties, the SUR method has (to our knowledge) not yet been used for estimating carcass composition prediction models.

The aims of this study were to compare alternative models for simultaneously predicting the lean meat proportion (LMP), subcutaneous fat proportion (SFP), intermuscular fat proportion (IFP), bone plus remainder proportion (BP), and kidney knob and channel fat proportion (KCFP) of lamb carcasses, and to compare the efficiency of the OLS and SUR estimators.

#### 2. Material and methods

#### 2.1. Data

Forty male lambs of Churra Galega Bragançana (n = 22) and Suffolk (n = 18) breeds were randomly selected from the experimental flock of the Escola Superior Agrária de Bragança. The lambs were slaughtered, and their carcasses were weighed approximately 30 min after slaughter in order to obtain the hot carcass weight (HCW). After chilling at 4°C for 24 hours, the carcasses were halved through the centre of the vertebral column, and the kidney knob and channel fat were removed and weighed. During quartering of the carcasses, the subcutaneous fat thickness (C12, mm) between the 12th and 13th rib was measured with a caliper, and the total breast bone tissue thickness (E2, mm) was taken with a sharpened steel rule in the middle of the 2nd sternebrae according to Delfa et al. (1996).

The left side of each carcass was dissected into muscle, subcutaneous fat, inter-muscular fat, and bone plus remainder (major blood vessels, ligaments, tendons, and thick connective tissue sheets associated with muscles). The carcasses' lean meat proportions (LMP), subcutaneous fat proportions (SFP), intermuscular fat proportions (IFP), bone plus remainder proportions (BP), and kidney and knob channel fat proportions (KCFP) were calculated as proportions of the total tissues in the carcasses.

# 2.2. Statistical analysis

Three multiple equations models were developed to simultaneously predict the LMP, SFP, IFP, BP and KCFP, and all statistical analyses were undertaken using the software "R" (R Development Core Team, 2011) with the add-on package "systemfit" (Henningsen and Hamann,

<sup>&</sup>lt;sup>1</sup>Additionally, the GR measurement, i.e. tissue thickness (both fat and lean tissue) taken 110 mm from the carcass midline over the 12th rib, could have been used as a predictor of the carcass composition. Unfortunately, it was not taken into account in this study, because it is not commonly used in Europe. However, this is not a significant drawback of this paper, because it is a concept type paper that focusses on the methodology and does not aim to directly provide parameter estimates for use in slaughterhouses.

2007). The fitting quality of each multiple equations model was evaluated by the McElroy coefficient of determination ( $R_M^2$ , see McElroy, 1977), and the fitting quality of single equations was evaluated by the (non-adjusted) coefficients of determination of estimation ( $R_e^2$ ), standard errors of the estimate<sup>2</sup> (SEE), and by the standard errors (SE) of the estimated parameters.

After estimating the "full" models by OLS and SUR, all explanatory variables that had a parameter with a marginal level of significance ("P value") larger than 0.20 were removed.

All models were validated using a leaving-one-out cross-validation procedure (Montgomery, 1997). This procedure repeats the statistical analysis N times, where N is the number of observations and at each replication a different observation is excluded from the estimation. Hence, in each replication, N-1 observations are used for estimating the model and then the dependent variable of the omitted observation is predicted based on the explanatory variables of the observation and the estimated coefficients. The average precision of these out-of-sample predictions was evaluated by computing the so-called predicted residual sum of squares (PRESS; Montgomery, 1997) statistic and the coefficient of determination of prediction ( $R_p^2$ ).<sup>3</sup> The normality of the residuals was evaluated using the Shapiro-Wilk test.

#### 2.2.1. Ordinary least squares

The general approach of multivariate single-equation regression models requires that there is only one dependent variable in each regression, i.e.

$$y_i = X_i \beta_i + \varepsilon_i, \tag{1}$$

where  $y_i$  is the a vector of the N observations of the ith dependent variable,  $X_i$  is an  $N \times k_i$  matrix of the regressors of the ith equation (including potentially a column of ones),  $\beta_i$  is the vector of the  $k_i$  parameters of the ith equation,  $k_i$  is the number of regressors (including potentially a constant) of the ith equation, and  $\varepsilon_i$  is the vector of error terms of the ith equation, which is assumed to be normally distributed. The OLS estimator assumes that all coefficients in the model are unknown and are estimated from data by  $\beta_i^{OLS} = (X_i'X_i)^{-1}X_i'y_i$ .

If the parameters of each equation are estimated separately by OLS, a potential correlation between the equations is not taken into account. Hence, it is implicitly assumed that the error terms are not contemporaneously correlated, i.e.  $E(\varepsilon_{it}\varepsilon_{jt}) = 0 \ \forall i \neq j$ , where subscripts i and j indicate the equation and subscript t denotes the observation.

<sup>&</sup>lt;sup>2</sup>The "standard error of the estimate" is sometimes also called "residual standard error" and is calculated as  $\sqrt{\sum_i (y_i - \hat{y_i})^2 / df}$ , where *i* denotes the observation,  $y_i$  is the observed value of the dependent variable,  $\hat{y_i}$  is the predicted (fitted) value of the dependent variable, and df denotes the degrees of freedom of the residuals.

<sup>&</sup>lt;sup>3</sup>The predicted residual sum of squares statistic is defined as  $PRESS = \sum_i (y_i - \hat{y}_{-i})$ , where  $y_i$  is the observed value of the dependent variable of the *i*th observation and  $\hat{y}_{-i}$  is the predicted value of the dependent variable of the *i*th observation based on estimates that are obtained by excluding the *i*th observation from the data set. The coefficient of determination of prediction is defined as  $R_p^2 = 1 - PRESS/S_{yy}$ , where  $S_{yy} = \sum_i (y_i - \bar{y})^2$  and  $\bar{y}$  is the sample mean of the dependent variable

## 2.2.2. Seemingly unrelated regression

Zellner (1962) developed the Seeming Unrelated Regression (SUR) estimator for estimating models with p > 1 dependent variables that allow for different regressor matrices in each equation (e.g.  $X_i \neq X_j$ ) and account for contemporaneous correlation, i.e.  $E(\varepsilon_{it}\varepsilon_{jt}) \neq 0$ . In order to simplify notation, all equations are stacked into a single equation:

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_p \end{bmatrix} = \begin{bmatrix} X_1 & 0 & 0 & 0 \\ 0 & X_2 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & X_p \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_p \end{bmatrix}$$
(2)

that can be re-written as  $Y = X\beta + \varepsilon$ , where the  $Y = (y'_1, y'_2, \dots, y'_p)'$  is a vector of all stacked dependent variables, X is a block diagonal design matrix with the  $i^{th}$  design matrix  $X_i$  on the  $ii^{th}$  block,  $\beta = (\beta'_1, \beta'_2, \dots, \beta'_p)'$  is the vector of the stacked coefficient vectors of all equations, the total number of parameters estimated for all p submodels is  $K = \sum_{i=1}^p k_i$ , and  $\varepsilon = (\varepsilon'_1, \varepsilon'_2, \dots, \varepsilon'_p)'$  is the vector of the stacked error vectors of all equations.

The same estimates as by separate single-equation OLS estimations can be obtained by an OLS estimation of the entire system of equations, i.e.  $\beta^{OLS} = (X'X)^{-1}X'y$ . The SUR estimator that accounts for interrelations between the single submodels can be obtained by  $\beta^{SUR} = \left[X'\Omega^{-1}X\right]^{-1}\left[X'\Omega^{-1}Y\right]$ , where  $\Omega^{-1}$  is a weighting matrix based on the covariance matrix of the error terms  $\Sigma$ . This covariance matrix  $\Sigma = [\sigma_{ij}]$  has the elements  $\sigma_{ij} = E\left[\varepsilon_{in}\varepsilon_{jn}\right]$ , where  $\varepsilon_{in}$  is the error term of the  $n^{th}$  observation of the  $i^{th}$  equation. Finally, the inverse of the weighting matrix can be calculated by  $\Omega = \Sigma \otimes I_N$ , where  $I_N$  is an  $N \times N$  identity matrix and  $\otimes$  denotes the Kronecker product. However, as the true error terms  $\varepsilon$  are unknown, they are often replaced by observed residuals, e.g. obtained from OLS estimates, i.e.  $\hat{\varepsilon}_i = y_i - X_i \beta_i^{OLS}$  so that the elements of the covariance matrix can be calculated by  $\frac{1}{2}$ 

$$\hat{\sigma}_{ij} = \frac{\hat{\varepsilon}_i' \hat{\varepsilon}_j}{N}.\tag{3}$$

Thus, a SUR model is an application of the generalized least squares (GLS) approach and the unknown residual covariance matrix is estimated from the data.

#### 2.2.3. Models for carcass composition

The OLS estimates are obtained while ignoring any correlation between the error terms of different equations. However, if the error terms are contemporaneously correlated, as is most

<sup>&</sup>lt;sup>4</sup>Other possibilities for calculating the covariance matrix of the error terms are described in, e.g. Henningsen and Hamann (2007).

likely in the case of carcass composition studies, the estimation procedure should take this into account. In this case, the SUR estimator leads to efficient parameter estimates (Yahya et al., 2008).

Our base model for carcass composition ("C12+E2") consists of five single equations to simultaneously predict the LMP, SFP, IFP, BP and KCFP of lamb carcasses:

$$LMP = \alpha_0 + \alpha_1 HCW + \alpha_2 C12 + \alpha_3 E2 + \varepsilon_1$$
 (4)

$$SFP = \beta_0 + \beta_1 HCW + \beta_2 C12 + \beta_3 E2 + \varepsilon_2$$
 (5)

$$IFP = \gamma_0 + \gamma_1 HCW + \gamma_2 C12 + \gamma_3 E2 + \varepsilon_3$$
 (6)

$$BP = \delta_0 + \delta_1 HCW + \delta_2 C12 + \delta_3 E2 + \varepsilon_4 \tag{7}$$

$$KCFP = \theta_0 + \theta_1 HCW + \theta_2 C12 + \theta_3 E2 + \varepsilon_5$$
 (8)

In this model  $\alpha_j$ ,  $\beta_j$ ,  $\gamma_j$ ,  $\delta_j$  and  $\theta_j$ ;  $j \in \{0,1,2,3\}$  are the regression coefficients to be estimated and  $\varepsilon_i$ ;  $i \in \{1,\ldots,5\}$  are the error terms in the models for the lean meat proportion (LMP), subcutaneous fat proportion (SFP), intermuscular fat proportion (IFP), bone plus remainders proportion (BP), and kidney knob and channel fat proportion (KCFP), respectively.

Furthermore, our analysis includes the sub-model "C12" with  $\alpha_3 = \beta_3 = \gamma_3 = \delta_3 = \theta_3 = 0$ , i.e. without the explanatory variable E2, and the sub-model "E2" with  $\alpha_2 = \beta_2 = \gamma_2 = \delta_2 = \theta_2 = 0$ , i.e. without the explanatory variable C12. Of course, there are myriad further sub-models, e.g. with explanatory variable "C12" removed in some equations and explanatory variable "E2" removed in some other equations. However, we do not consider these sub-models in our analysis, because they would require the slaughterhouse to take two measures of carcass fat depth and hence, would cause the same costs as the full model "C12+E2". In contrast, our two submodels "C12" and "E2" are each based on a single measure of carcass fat depth and hence, would cause significantly lower costs. Therefore, submodels "C12" and "E2" are much more likely to be implemented in slaughterhouses than submodels that include both "C12" and "E2" as explanatory variables.

Our models for carcass composition should be generally applicable in the slaughterhouses and hence, they should be independent of breeds. We will use statistical tests to check whether the model estimates dependent on the breed.

# 3. Results and Discussion

#### 3.1. Descriptive statistics

The mean values, standard deviations (SD), coefficients of variation (CV), minimum and maximum values along with the correlation coefficients among HCW, C12, E2, LMP, SFP, IFP, BP and KCFP are shown in Table 1. All carcass proportions had low (absolute) variations

(SD $\leq$  2.86) and the LMP had the lowest relative variation (CV = 4.7%). In contrast, C12 was the variable with the highest CV (45.4%). The HCW had a low and statistically insignificant correlation with the C12 measurement (r = 0.13) and a moderate positive correlation (r = 0.52) with E2. These results are in agreement with the low variability of the LMP observed by Silva (2001) and Cadavez (2009), and this small variation in the carcasses' LMP was pointed out as the main constraint to prediction models with high determination coefficient (Fortin and Sherestha, 1986; Silva, 2001; Cadavez, 2009), since this statistic is highly influenced by the variation of the dependent variable (Chatterjee et al., 2000).

# 3.2. Results of OLS and SUR estimations

The estimated parameters and summary statistics for the three models "C12", "E2", and "C12+E2" are presented in Table 2. Given that the same regressors were used in each equation, OLS and SUR estimations result in identical estimates of the coefficients and their standard errors (Zellner, 1962, p. 351). As the dependent variables sum up to 100% at each observation and exactly the same regressors were used in each equation, the covariance matrix of the residuals becomes singular. Hence, the weighting matrix of the SUR estimator cannot be inverted so that a SUR estimation of all five equations becomes infeasible. However, an arbitrary equation can be dropped and the system can be estimated with the remaining four equations. After the estimation, the parameters of the dropped equation can be retrieved by the "adding-up" restriction, i.e. the intercepts of all five equations have to sum to 100% and the parameters of each explanatory variable (except for the constant) have to sum to zero. The variances and covariances of the parameters of the omitted equation can be calculated by the delta method. The estimated parameters and their variances and covariances do not usually depend on the equation that is dropped. However, as all five equations can be estimated by OLS and these estimates coincide with SUR estimates in our current model specification, there is no advantage of using SUR over OLS for estimating these models.

As expected, the general model "C12+E2" gives the best overall fit, indicated by the highest McElroy- $R^2$  (0.476), followed by model "E2" (0.399), while model "C12" presents the lowest McElroy- $R^2$  (0.292). These results indicate that total breast bone tissue thickness (E2) explains a higher proportion of carcass composition than subcutaneous fat thickness (C12), but both measures together explain the largest proportion. This means that both of the carcass fat depth measurements, C12 and E2, are relevant determinants of tissue proportions in lamb carcasses, which is in accordance with the results attained by Cadavez (2009). Our results also confirmed those attained by Hopkins et al. (2008) and Hopkins (2008), who showed that HCW alone is unable to explain the LMP.

When looking at the goodness of fit of the individual equations, it becomes apparent that model "C12" (i.e. with explanatory variables HCW and C12) has the lowest coefficients of determination of estimation ( $R_e^2$ ) in four out of five equations (LMP, SFP, IFP, and KCFP). For in-

stance, model "C12" can only explain a very limited variation of LMP ( $R_e^2 = 0.140$ ), while model "E2" ( $R_e^2 = 0.425$ ) performs much better, while the general model "C12+E2" ( $R_e^2 = 0.425$ ) is not (noticeably) better than model "E2".

As the correlation between the two fat measurements (C12 and E2) is moderately high (r=0.51), the general model "C12+E2" is somewhat plagued by multicollinearity between its regressors. This results in less precise parameter estimates and can be seen by increased standard errors and lower coefficients of determination of prediction  $(R_p^2)$ . In fact, the standard errors of the regression coefficients and the standard errors of the estimates (SEE) are often larger in the general model "C12+E2" than in the specific model "E2". Moreover, the predictive ability of model "E2" measured by the coefficient of determination of prediction  $(R_p^2)$  is even better than the predictive ability of the general model "C12+E2" for three out of five equations (LMP, IFP, KCFP).

As models "C12" and "E2" are nested in model "C12+E2", we can apply an F-Test on the general model "C12+E2" to test the restrictions implied by models "C12" and "E2". While model "C12" is clearly rejected in favour of the general model "C12+E2", model "E2" is not significantly worse than the general model "C12+E2". Hence, given the costs of taking two measures of carcass fat depth (C12 and E2), model "E2" is probably the most cost-effective predictor of LMP for slaughterhouse applications since it is based on a single fat measurement (E2) and is not significantly worse in predicting lamb carcass composition than the more costly model "C12+E2". As slaughterhouses would only implement a new prediction model if it can be done easily and at low cost, the inclusion of a second fat measurement in the prediction model cannot be justified because of the resulting economic cost.

We used F-tests to check whether the models depend on the breed. These tests confirmed that the estimated parameters of model "C12+E2" and submodel "E2" do not significantly differ between the breeds (P values 0.20 and 0.09, respectively), while the estimated parameters of submodel "C12" significantly differ between the breeds (P value 0.001). Hence, we can conclude that our "preferred" model "E2" is suitable for both breeds in our sample.<sup>6</sup>

The correlations between the residuals of our "preferred" model "E2" are shown in Table 3. This table indicates that several equations are highly or moderately interrelated. For instance, the first equation (LMP) is highly interdependent with the second equation (SFP, r = -0.709) and the third equation (IFP, r = -0.670) and moderately interdependent with the fourth equation (KCFP, r = -0.505). As the OLS approach does not take these interrelationships into account, the OLS estimates should be inefficient (not as precise as possible). However, as we use exactly the same explanatory variables in each equation, OLS estimates coincide with SUR estimates

 $<sup>^5</sup>$ Furthermore, due to the larger magnitude of the E2 measure (mean = 16.4 mm), it is easier to measure and more robust to measurement errors than the C12 measure (mean = 1.3 mm).

<sup>&</sup>lt;sup>6</sup>Given the small number of observations for each breed (n = 22 and n = 18, respectively), we suggest to scrutinize this result with larger samples in the future.

and hence, are not negatively affected by the contemporaneous correlation of the error terms.

Given that some of the estimated parameters of our "preferred" model "E2" are statistically non-significant and that the inclusion of non-significant explanatory variables generally reduces the precision of the estimates, we tried to improve the precision of our estimates by removing non-significant regressors. Thus, we re-estimated model "E2" after removing all regressors that were not significant at the 20% level. We chose a rather high threshold as we wanted to be cautious and avoid removing relevant explanatory variables. As this adjusted version of model "E2", say "E2a", no longer has the same explanatory variables in all equations, OLS estimates differ from SUR estimates and all five equations can be included in the SUR regression. The OLS and SUR estimates as well as summary statistics are shown in Table 4. An F-Test applied to model "E2" shows that the three parameters that have been removed in model "E2a" are jointly not statistically significant. Hence, model "E2a" is not significantly worse than model "E2". The Shapiro-Wilk statistic shows that for both estimators (OLS and SUR) the single-equation residuals have zero mean and follow a normal distribution (data not shown). As the McElroy-R<sup>2</sup> is not intended for OLS regressions and the McElroy-R<sup>2</sup> values for model "E2a" are—in contrast to the models shown in Table 2—based on all five equations, we cannot make reasonable comparisons using the McElroy-R<sup>2</sup> of model "E2a" here. Given that the OLS estimation ignores interrelations between equations, the OLS estimates differ between model "E2" and model "E2a" only if an explanatory variable is removed in the respective equation, i.e. in the equations for SFP and KCFP. In contrast, the SUR estimator accounts for contemporaneous correlations among the equations and hence, the SUR estimates of all equations differ between model "E2" and model "E2a". Furthermore, the efficiency of the SUR estimates compared to the OLS estimates is expected to increase in the presence of highly correlated covariates (Yahya et al., 2008), which is a common feature of carcass composition data. Since all tissues are taken in the same experimental unit (the carcass), the measurements are correlated with each other (multicolinear data) as shown by Cadavez (2009). Hence, the parameters obtained by SUR are characterized by lower standard errors. As the error terms for LMP have the highest correlations with other error terms, the reduction of the standard errors is especially visible in this equation: the SE of the intercept decreases by 30% and the SE of the parameter of HCW decreases by 20%. Thus, modeling the carcass composition of lambs while ignoring the residuals variance-covariance structure results in inefficient estimates (Yahya et al., 2008).

Given that the OLS estimates of the unchanged equations are the same in model "E2" and model "E2a", the coefficients of determination of prediction  $R_p^2$  are also the same for these equations. While the removal of the intercept in the equation for SFP increased the  $R_p^2$  by 2.3%, the removal of the intercept and HCW in the equation for KCFP reduced the  $R_p^2$  by 1.8%. When estimating model "E2a" by SUR instead of by OLS, the  $R_p^2$  values for LMP and IFP increase

<sup>&</sup>lt;sup>7</sup>In fact, we would remove exactly the same explanatory variables if we had any threshold between 11% and 35%.

by 1.9% and 1.3%, respectively, while the  $R_p^2$  values for SFP and BP only decrease by 0.8% and 0.3%, respectively. Hence, estimating model "E2a" by SUR slightly improves the average precision of the predictions. Furthermore, the smaller SE of the parameter estimates obtained by the SUR estimator also indicate a (slight) superiority of this estimator. Given that this study is only based on a small sample and that the advantages of the SUR estimator increase with the sample size (Yahya et al., 2008), our results indicate that the SUR estimator has a clear potential for generating better models for predicting carcass composition.

We have also estimated all models by iterative seemingly unrelated regression (ITSUR), which is equivalent to the maximum likelihood (ML) method (Park, 1993). As the ITSUR estimates were virtually identical to the SUR estimates, we do not show them here.

The correlations of the residuals obtained from estimating model "E2a" by OLS and SUR are shown in Table 5.

## 4. Conclusion

This paper presents a novel approach to simultaneously predict carcass components using the SUR technique and the results are relevant for implementing objective carcass classification systems. The SUR estimator provides the lowest standard errors of the estimated parameters and thus, the highest precision of the estimates, since it takes the correlation between the error terms into account. The results of our study revealed that the HCW and E2 measurement are the most relevant predictors of carcass tissues. However, for different lamb populations (other breeds or production systems) or for lambs slaughtered at considerably different carcass weights, the performance of the predictors might be different. Thus, specific studies should be undertaken in order to test and select the best models and predictors for predicting carcass proportions of different lamb populations. Our findings can have a positive effect on the meat industry, since the methodology applied to predict the carcass composition (using the E2 or other LMP predictors) can improve decision support systems by using the proportions of all carcass tissues to determine the price as well as the optimal processing (e.g. refrigeration conditions) of the carcasses. Furthermore, the SUR estimates result in more precise predictions of the proportions of carcass components than the OLS (equation-by-equation) estimates. Thus, SUR is a robust methodology for predicting the carcass composition of lambs. In spite of the elegant properties of the SUR estimator, it is an underused multivariate regression technique, especially for predicting carcass composition. Indeed—as far as we know—it has not been used for this purpose before.

# Acknowledgements

The authors are grateful to two anonymous reviewers for valuable suggestions that helped us to improve this paper. Of course, all errors are the sole responsibility of the authors.

## References

- Cadavez, V. A. P., 2009. Prediction of lean meat proportion of lamb carcasses. Archiva Zootechnica 12 (4), 46-58.
- Chatterjee, S., Hadi, A. S., Price, B., 2000. Regression analysis by a example. John Willey & Sons, Inc., New York.
- Cortez, P., Portelinha, M., Cadavez, V. A. P., Rodrigues, S., Teixeira, A., 2006. Lamb meat quality assessment by support vector machines. Neural Processing Letters 24, 41–51.
- Delfa, R., González, C., Teixeira, A., 1996. Use of cold carcass weight and fat depth measurements to predict carcass composition of rasa aragonesa lambs. Small Ruminant Research 20, 267–274.
- Ferguson, D., 2004. Objective on-line assessment of marbling: a brief review. Australian Journal of Experimental Agriculture 44 (7), 681–686.
- Fortin, A., Sherestha, J. N. B., 1986. In vivo estimation of carcass meat by ultrasound in ram lambs slaughtered at an live weight of 37 kg. Animal Production 43, 469–475.
- Henningsen, A., Hamann, J. D., 2007. systemfit: A package for estimating systems of simultaneous equations in r. Journal of Statistical Software 23 (4), 1–40.
- Hopkins, D. L., 2008. An industry applicable model for predicting lean meat yield in lamb carcasses. Australian Journal of Experimental Agriculture 48, 757–761.
- Hopkins, D. L., Ponnampalam, E. N., Warner, R. D., 2008. Predicting the composition of lamb carcasses using alternative fat and muscle depth measures. Meat Science 78, 400–405.
- Judge, G. G., Hill, R. C., Griffiths, W. E., Lutkepohl, H., Lee, T. C., 1988. Introduction to the teory and practise of econometrics, 2nd Edition. Wiley, New York.
- Kongsro, J., Roe, M., Kvaal, K., Aastveit, A. H., Egelandsdal, B., 2009. Prediction of fat, muscle and value in norwegian lamb carcasses using EUROP classification, carcass shape and length measurements, visible light reflectance and computer tomography (CT). Meat Science 81, 102–107.
- Lambe, N. R., Navajas, E. A., Schofield, C. P., Fisher, A. V., Simm, G., Roehe, R., Bunger, L., 2008. The use of various live animal measurements to predict carcass and meat quality in two divergent lamb breeds. Meat Science 80, 1138–1149
- McElroy, M. B., 1977. Goodness of fit for seemingly unrelated regressions. Journal of Econometrics 6, 381-387.
- Montgomery, D. C., 1997. Design and analysis of experiments, fourth edition Edition. John Wiley & Sons, New York.
- Park, T., 1993. Equivalence of maximum likelihood estimation and iterative two-stage estimation for seemingly unrelated regression models. Communications in Statistics Theory and Methods 22 (8), 2285–2296.
- R Development Core Team, 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0.
- Rius-Vilarrasa, E., Bünger, L., Maltin, C., Matthews, K. R., Roehe, R., 2009. Evaluation of video image analysis (via) technology to predict meat yield of sheep carcasses on-line under UK abattoir conditions. Meat Science 82, 94–100.
- Silva, S. J. C. R., 2001. Composição das carcaças e dos depósitos internos de gordura de ovelhas de raça churra da terra quente. Ph.D. thesis, Universidade de Trás-os-Montes e Alto Douro, Vila Real.
- Theil, H., 1971. Principles of Econometrics. Wiley, New York.
- Wood, J., 1995. The influence of carcass composition on meat quality. Ch. Quality and Grading of Carcasses of Meat Animals, pp. 131–155.
- Yahya, W. B., Adebayo, S. B., Jolayemi, E. T., Oyejola, B. A., Sanni, O. O. M., May 2008. Effects of non-orthogonality on the efficiency of seemingly unrelated regression (sur) models. InterStat Journal, 1–29.
- Zellner, A., 1962. An efficient method of estimating seemingly unrelated regression equations and test for aggregation bias. Journal of American Statistical Association 57, 348–368.

Table 1: Descriptive statistics and correlations among HCW, C12, E2, LMP, SFP, IFP, BP, and KCFP

|          |      | Desci | riptive sta | tistics |      | Correlations |       |         |        |        |        |        |  |  |
|----------|------|-------|-------------|---------|------|--------------|-------|---------|--------|--------|--------|--------|--|--|
| Variable | Mean | SD    | Min         | Max     | CV   | C12          | E2    | LMP     | SFP    | IFP    | BP     | KCFP   |  |  |
| HCW, kg  | 12.2 | 1.98  | 8.0         | 15.0    | 15.7 | 0.13ns       | 0.52* | -0.14ns | 0.20ns | 0.47*  | -0.55* | 0.31ns |  |  |
| C12, mm  | 1.3  | 0.59  | 0.35        | 2.5     | 45.4 | 1            | 0.51* | -0.36*  | 0.63*  | 0.25*  | -0.41* | 0.42*  |  |  |
| E2, mm   | 16.4 | 3.46  | 7.8         | 24.3    | 21.1 |              | 1     | -0.61*  | 0.77*  | 0.52*  | -0.52* | 0.75*  |  |  |
| LMP, %   | 61.4 | 2.86  | 57.7        | 66.8    | 4.7  |              |       | 1       | -0.84* | -0.69* | 0.14ns | -0.73* |  |  |
| SFP, %   | 4.9  | 1.73  | 1.5         | 8.2     | 35.3 |              |       |         | 1      | 0.56*  | -0.44* | 0.82*  |  |  |
| IFP, %   | 9.1  | 1.85  | 3.6         | 12.9    | 20.3 |              |       |         |        | 1      | -0.63* | 0.55*  |  |  |
| BP, %    | 23.3 | 1.78  | 20.2        | 27.5    | 7.6  |              |       |         |        |        | 1      | -0.48* |  |  |
| KCFP, %  | 1.4  | 0.50  | 0.38        | 2.2     | 35.7 |              |       |         |        |        |        | 1      |  |  |

 $\overline{\text{ns} - \text{non signficant (P}>0.05)}$ ; \* - significant (P $\leq$ 0.05)

|                                                       |                | 2      |         |       | 9        | -,     |        |          |        |       |          |        |       |          |         |         |       |
|-------------------------------------------------------|----------------|--------|---------|-------|----------|--------|--------|----------|--------|-------|----------|--------|-------|----------|---------|---------|-------|
|                                                       | BP             | C12+E2 | 30.4    | 1.465 | <2.2e-16 | -0.382 | 0.135  | 0.008    | -0.083 | 0.089 | 0.355    | -0.801 | 0.447 | 0.081    | 0.425   | 0.338   | 1.404 |
|                                                       | BP             | E2     | 30.2    | 1.50  | <2e-16   | -0.338 | 0.137  | 0.018    | -0.166 | 0.078 | 0.041    |        |       |          | 0.373   | 0.303   | 1.45  |
|                                                       | BP             | C12    | 30.1    | 1.436 | <2.2e-16 | -0.449 | 0.114  | 0.000    |        |       |          | -1.02  | 0.382 | 0.011    | 0.411   | 0.346   | 1.401 |
|                                                       | KCFP           | C12+E2 | -0.227  | 0.357 | 0.528    | -0.029 | 0.033  | 0.389    | 0.116  | 0.022 | 4.9e-06  | 0.023  | 0.109 | 0.834    | 0.576   | 0.523   | 0.342 |
|                                                       | KCFP           | E2     | -0.221  | 0.350 | 0.553    | -0.030 | 0.032  | 0.355    | 0.119  | 0.018 | 1.4e-07  |        |       |          | 0.576   | 0.544   | 0.337 |
|                                                       | KCFP           | C12    | 0.133   | 0.463 | 0.775    | 0.065  | 0.037  | 0.085    |        |       |          | 0.325  | 0.123 | 0.012    | 0.238   | 0.164   | 0.452 |
| els                                                   | IFP            | C12+E2 | 2.67    | 1.65  | 0.114    | 0.254  | 0.152  | 0.103    | 0.195  | 0.100 | 0.059    | 0.074  | 0.503 | 0.884    | 0.323   | 0.220   | 1.58  |
| basic mod                                             | IFP            | E2     | 2.69    | 1.62  | 0.105    | 0.250  | 0.147  | 0.098    | 0.203  | 0.085 | 0.022    |        |       |          | 0.323   | 0.239   | 1.56  |
| the three                                             | IFP            | C12    | 3.27    | 1.68  | 0.059    | 0.412  | 0.134  | 0.004    |        |       |          | 0.581  | 0.446 | 0.201    | 0.252   | 0.164   | 1.64  |
| lable 2: Estimation results of the three basic models | SFP            | C12+E2 | 0.102   | 1.00  | 0.919    | -0.205 | 0.093  | 0.033    | 0.376  | 0.061 | 4.0e-0.7 | 0.829  | 0.306 | 0.010    | 0.716   | 699.0   | 0.961 |
| : Estimatio                                           | SFP            | E2     | 0.348   | 1.08  | 0.750    | -0.250 | 0.099  | 0.016    | 0.462  | 0.056 | 8.0e-10  |        |       |          | 0.658   | 0.622   | 1.04  |
| Table 2                                               | SFP            | C12    | 1.27    | 1.39  | 0.378    | 0.099  | 0.1111 | 0.376    |        |       |          | 1.81   | 0.371 | 2.1e-05  | 0.415   | 0.351   | 1.36  |
|                                                       | LMP            | C12+E2 | 67.1    | 2.35  | <2.2e-16 | 0.361  | 0.217  | 0.105    | -0.604 | 0.143 | 0.000    | -0.125 | 0.718 | 0.863    | 0.425   | 0.341   | 2.25  |
|                                                       | LMP            | E2     | 0.79    | 2.31  | <2.2e-16 | 0.368  | 0.211  | 0.090    | -0.617 | 0.121 | 9.9e-06  |        |       |          | 0.425   | 0.375   | 2.23  |
|                                                       | LMP            | C12    | 65.2    | 2.79  | <2e-16   | -0.128 | 0.222  | 0.569    |        |       |          | -1.70  | 0.741 | 0.028    | 0.140   | 0.051   | 2.72  |
|                                                       | nt var.        |        | Estim.  | SE    | Pr(>ltl) | Estim. | SE     | Pr(>ltl) | Estim. | SE    | Pr(>ltl) | Estim. | SE    | Pr(>ltl) |         |         |       |
|                                                       | Dependent var. | Model  | Interc. |       |          | HCW    |        |          | E2     |       |          | C12    |       |          | $R_e^2$ | $R_p^2$ | SEE   |

McElroy- $R^2$  values (based on SUR estimations with an arbitrary equation removed): model "C12" = 0.292, model "E2" = 0.399, model "C12+E2" = 0.476 F-Tests(Theil, 1971, p. 314):
- restricting model "C12+E2" to model "C12": F = 8.448 with 5 and 180 degrees of freedom, P-value =  $3.355 \cdot 10^{-7}$ 

- restricting model "C12+E2" to model "E2": F = 1.0059 with 5 and 180 degrees of freedom, P-value = 0.4157

Table 3: Residuals correlations for model "E2" estimated by ordinary least squares method (OLS)

|      | LMP | SFP    | IFP    | KCFP   | BP     |
|------|-----|--------|--------|--------|--------|
| LMP  | 1   | -0.709 | -0.670 | -0.505 | -0.189 |
| SFP  |     | 1      | 0.445  | 0.569  | -0.242 |
| IFP  |     |        | 1      | 0.337  | -0.446 |
| KCFP |     |        |        | 1      | -0.229 |
| BP   |     |        |        |        | 1      |

| Dependent var | nt var.           | LMP      | LMP      | SFP     | SFP     | IFP   | IFP   | KCFP    | KCFP    | BP     | BP     |
|---------------|-------------------|----------|----------|---------|---------|-------|-------|---------|---------|--------|--------|
| stimati       | Estimation method | OLS      | SUR      | OLS     | SUR     | OLS   | SUR   | OLS     | SUR     | OLS    | SUR    |
| Interc.       | Estim.            | 0.79     | 67.3     |         |         | 2.69  | 2.60  |         |         | 30.2   | 30.1   |
|               | SE                | 2.31     | 1.61     |         |         | 1.62  | 1.44  |         |         | 1.50   | 1.45   |
|               | Pr(>ltl)          | <2.2e-16 | <2.2e-16 |         |         | 0.105 | 0.079 |         |         | <2e-16 | <2e-16 |
| HCW           | Estim.            | 0.368    | 0.216    | -0.229  | -0.159  | 0.250 | 0.318 |         |         | -0.338 | -0.376 |
|               | SE                | 0.211    | 0.169    | 0.073   | 0.061   | 0.147 | 0.136 |         |         | 0.137  | 0.133  |
|               | Pr(>ltl)          | 0.090    | 0.208    | 0.003   | 0.013   | 0.098 | 0.025 |         |         | 0.018  | 0.007  |
| E2            | Estim.            | -0.617   | -0.523   | 0.467   | 0.417   | 0.203 | 0.158 | 0.084   | 0.084   | -0.166 | -0.137 |
|               | SE                | 0.121    | 0.105    | 0.054   | 0.046   | 0.085 | 0.080 | 0.003   | 0.003   | 0.078  | 0.076  |
|               | Pr(>ltl)          | 9.9e-06  | 1.4e-05  | 1.4e-10 | 3.8e-11 | 0.022 | 0.055 | 2.2e-16 | 2.2e-16 | 0.041  | 0.082  |
| $R_e^2$       |                   | 0.425    | 0.413    | 0.657   | 0.649   | 0.323 | 0.317 | 0.533   | 0.533   | 0.373  | 0.371  |
| $R_p^2$       |                   | 0.375    | 0.382    | 0.636   | 0.631   | 0.239 | 0.242 | 0.534   | 0.534   | 0.303  | 0.302  |
| SEE           |                   | 2.23     | 2.25     | 1.03    | 1.04    | 1.56  | 1.56  | 0.344   | 0.344   | 1.445  | 1.448  |

McElroy-R<sup>2</sup> values (based on estimations with all 5 equations): OLS = 0.240, SUR = 0.588
F-Test (Theil, 1971, p. 314) for restricting model "E2" to this model: F = 0.5935 with 3 and 185 degrees of freedom, P-value = 0.62

Table 5: Residuals correlations for model "E2a" estimated by OLS and SUR estimators

|      |     |        | OLS    |        |        |     |        | SUR    |        |        |
|------|-----|--------|--------|--------|--------|-----|--------|--------|--------|--------|
|      | LMP | SFP    | IFP    | KCFP   | BP     | LMP | SFP    | IFP    | KCFP   | BP     |
| LMP  | 1   | -0.708 | -0.670 | -0.482 | -0.189 | 1   | -0.714 | -0.673 | -0.514 | -0.179 |
| SFP  |     | 1      | 0.444  | 0.538  | -0.241 |     | 1      | 0.452  | 0.574  | -0.248 |
| IFP  |     |        | 1      | 0.323  | -0.446 |     |        | 1      | 0.345  | -0.449 |
| KCFP |     |        |        | 1      | -0.229 |     |        |        | 1      | -0.236 |
| BP   |     |        |        |        | 1      |     |        |        |        | 1      |