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The Use of Seemingly Unrelated Regression (SUR) to Predict the
Carcass Composition of Lambs
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Abstract

The aim of this study was to develop and evaluate models for predicting the carcass composition
of lambs. Forty male lambs were slaughtered and their carcasses were cooled for 24 hours. The
subcutaneous fat thickness was measured between the 12th and 13th rib and the total breast bone
tissue thickness was taken in the middle of the second sternebrae. The left side of carcasses was
dissected into five components and the proportions of lean meat (LMP), subcutaneous fat (SFP),
intermuscular fat (IFP), kidney and knob channel fat (KCFP), and bone plus remainder (BP) were
obtained. Models were fitted using the seemingly unrelated regression (SUR) estimator which
is novel in this area, and the results were compared to ordinary least squares (OLS) estimates.
The models were validated using the PRESS statistic. Our results showed that the SUR estimator
performed better in predicting LMP and IFP than the OLS estimator. Although objective carcass
classification systems could be improved by using the SUR estimator, it has never been used
before for predicting carcass composition.
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1. Introduction

Generally speaking, good quality carcasses should present a reduced amount of fat, but there
must be enough fat to guarantee a good presentation of the carcasses and for protecting the meat
during the refrigeration period. Carcasses with excess fat are undesirable, because this leads
to higher production costs and compels meat traders to remove the fat before selling the meat.
However, fat plays an important role in the meat sensory characteristics, and a minimum content
of fat is needed in order to maximize the meat palatability (Wood, 1995; Ferguson, 2004). Thus,
a carcass with an optimum composition should fetch the highest price, and whenever the carcass
composition moves away from the optimum, its value should suffer depreciation.

The success of the meat industry relies on its ability to deliver meat products that satisfy the
consumers’ requirements (Cortez et al., 2006). Thus, an accurate system of carcasses classifi-
cation is of great importance to the meat industry (Kongsro et al., 2009; Rius-Vilarrasa et al.,
2009), since it is the base for fair payments to producers, as well as the communication of con-
sumers’ needs through the supply chain (Rius-Vilarrasa et al., 2009). Therefore, researchers have
dedicated much effort into developing reliable prediction models of carcasses composition, and
several research studies (e.g. Lambe et al., 2008; Hopkins et al., 2008; Hopkins, 2008; Cadavez,
2009) have been conducted to develop an objective system for the classification of carcasses to
be applied at the slaughter-line. The results attained by Hopkins (2008) and Cadavez (2009) in-
dicate that the lean meat proportion (LMP) of lamb carcasses can be predicted by simple models
using the hot carcass weight (HCW) and fat depth measurements as explanatory variables.

A common feature of published work concerning the prediction of carcass composition is
the use of single-equation models. In this approach, several independent equations are estimated
separately by ordinary least squares (OLS) and the estimated parameters are used to predict the
proportions of muscle, fat, and bone of carcasses. However, this assumption of independence
is not supported by biological knowledge, and it is well known that carcass compositional traits
are correlated both phenotypically and genotypically. As the proportions of the different carcass
tissues are correlated, it is expected that the equations for predicting these will be interrelated.
Hence, we can expect that the single-equation approach will be inefficient from a statistical point
of view (see e.g. Judge et al., 1988).

A set of equations which share a common error structure with non-zero covariance is said to
be contemporaneously correlated. Zellner (1962) developed the co-called “Seemingly Unrelated
Regression” (SUR) estimator that accounts for these contemporaneous correlations and allows
the p dependent variables to have different sets of explanatory variables. The SUR method es-
timates the parameters of all equations simultaneously, so that the parameters of each single
equation also take the information provided by the other equations into account. This results in
greater efficiency of the parameter estimates, because additional information is used to describe
the system. These efficiency gains increase with increasing correlation among the error terms of
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the different equations (Judge et al., 1988), as well as with larger sample size and higher multi-
collinearity between the regressors (Yahya et al., 2008). In the case of models for predicting
carcass composition, the SUR method can be used to estimate all parameters of all equations si-
multaneously, whilst the correlations among the carcass tissues are taken into account. However,
in spite of these elegant proprieties, the SUR method has (to our knowledge) not yet been used
for estimating carcass composition prediction models.

The aims of this study were to compare alternative models for simultaneously predicting the
lean meat proportion (LMP), subcutaneous fat proportion (SFP), intermuscular fat proportion
(IFP), bone plus remainder proportion (BP), and kidney knob and channel fat proportion (KCFP)
of lamb carcasses, and to compare the efficiency of the OLS and SUR estimators.

2. Material and methods

2.1. Data

Forty male lambs of Churra Galega Bragançana (n = 22) and Suffolk (n = 18) breeds were
randomly selected from the experimental flock of the Escola Superior Agrária de Bragança. The
lambs were slaughtered, and their carcasses were weighed approximately 30 min after slaughter
in order to obtain the hot carcass weight (HCW). After chilling at 4ºC for 24 hours, the carcasses
were halved through the centre of the vertebral column, and the kidney knob and channel fat were
removed and weighed. During quartering of the carcasses, the subcutaneous fat thickness (C12,
mm) between the 12th and 13th rib was measured with a caliper, and the total breast bone tissue
thickness (E2, mm) was taken with a sharpened steel rule in the middle of the 2nd sternebrae
according to Delfa et al. (1996).1

The left side of each carcass was dissected into muscle, subcutaneous fat, inter-muscular fat,
and bone plus remainder (major blood vessels, ligaments, tendons, and thick connective tissue
sheets associated with muscles). The carcasses’ lean meat proportions (LMP), subcutaneous fat
proportions (SFP), intermuscular fat proportions (IFP), bone plus remainder proportions (BP),
and kidney and knob channel fat proportions (KCFP) were calculated as proportions of the total
tissues in the carcasses.
2.2. Statistical analysis

Three multiple equations models were developed to simultaneously predict the LMP, SFP,
IFP, BP and KCFP, and all statistical analyses were undertaken using the software “R” (R De-
velopment Core Team, 2011) with the add-on package “systemfit” (Henningsen and Hamann,

1Additionally, the GR measurement, i.e. tissue thickness (both fat and lean tissue) taken 110 mm from the carcass
midline over the 12th rib, could have been used as a predictor of the carcass composition. Unfortunately, it was not taken
into account in this study, because it is not commonly used in Europe. However, this is not a significant drawback of this
paper, because it is a concept type paper that focusses on the methodology and does not aim to directly provide parameter
estimates for use in slaughterhouses.
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2007). The fitting quality of each multiple equations model was evaluated by the McElroy coef-
ficient of determination (R2

M , see McElroy, 1977), and the fitting quality of single equations was
evaluated by the (non-adjusted) coefficients of determination of estimation (R2

e), standard errors
of the estimate2 (SEE), and by the standard errors (SE) of the estimated parameters.

After estimating the “full” models by OLS and SUR, all explanatory variables that had a
parameter with a marginal level of significance (“P value”) larger than 0.20 were removed.

All models were validated using a leaving-one-out cross-validation procedure (Montgomery,
1997). This procedure repeats the statistical analysis N times, where N is the number of obser-
vations and at each replication a different observation is excluded from the estimation. Hence,
in each replication, N−1 observations are used for estimating the model and then the dependent
variable of the omitted observation is predicted based on the explanatory variables of the obser-
vation and the estimated coefficients. The average precision of these out-of-sample predictions
was evaluated by computing the so-called predicted residual sum of squares (PRESS; Mont-
gomery, 1997) statistic and the coefficient of determination of prediction (R2

p).3 The normality
of the residuals was evaluated using the Shapiro-Wilk test.
2.2.1. Ordinary least squares

The general approach of multivariate single-equation regression models requires that there is
only one dependent variable in each regression, i.e.

yi = Xiβi + εi, (1)

where yi is the a vector of the N observations of the ith dependent variable, Xi is an N× ki

matrix of the regressors of the ith equation (including potentially a column of ones), βi is the
vector of the ki parameters of the ith equation, ki is the number of regressors (including potentially
a constant) of the ith equation, and εi is the vector of error terms of the ith equation, which is
assumed to be normally distributed. The OLS estimator assumes that all coefficients in the model
are unknown and are estimated from data by β OLS

i = (X ′i Xi)
−1 X ′i yi.

If the parameters of each equation are estimated separately by OLS, a potential correlation
between the equations is not taken into account. Hence, it is implicitly assumed that the error
terms are not contemporaneously correlated, i.e. E(εitε jt) = 0 ∀ i 6= j, where subscripts i and j

indicate the equation and subscript t denotes the observation.

2The “standard error of the estimate” is sometimes also called “residual standard error” and is calculated as√
∑i (yi− ŷi)

2
/

d f , where i denotes the observation, yi is the observed value of the dependent variable, ŷi is the predicted

(fitted) value of the dependent variable, and d f denotes the degrees of freedom of the residuals.
3The predicted residual sum of squares statistic is defined as PRESS = ∑i (yi− ŷ−i), where yi is the observed value of

the dependent variable of the ith observation and ŷ−i is the predicted value of the dependent variable of the ith observation
based on estimates that are obtained by excluding the ith observation from the data set. The coefficient of determination
of prediction is defined as R2

p = 1− PRESS
/

Syy, where Syy = ∑i (yi− ȳ)2 and ȳ is the sample mean of the dependent
variable.
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2.2.2. Seemingly unrelated regression

Zellner (1962) developed the Seeming Unrelated Regression (SUR) estimator for estimating
models with p > 1 dependent variables that allow for different regressor matrices in each equa-
tion (e.g. Xi 6= X j) and account for contemporaneous correlation, i.e. E(εitε jt) 6= 0. In order to
simplify notation, all equations are stacked into a single equation:

y1

y2
...

yp

 =


X1 0 0 0
0 X2 0 0

0 0
. . . 0

0 0 0 Xp




β1

β 2
...

βp

+


ε1

ε2
...

εp

 (2)

that can be re-written as Y = Xβ + ε, where the Y =
(
y′1,y

′
2, . . . ,y

′
p
)′ is a vector of all stacked

dependent variables, X is a block diagonal design matrix with the ith design matrix Xi on the iith

block, β =
(
β ′1,β

′
2, . . . ,β

′
p
)′ is the vector of the stacked coefficient vectors of all equations, the

total number of parameters estimated for all p submodels is K = ∑
p
i=1 ki, and ε =

(
ε ′1,ε

′
2, . . . ,ε

′
p
)′

is the vector of the stacked error vectors of all equations.
The same estimates as by separate single-equation OLS estimations can be obtained by an

OLS estimation of the entire system of equations, i.e. β OLS = (X ′X)−1 X ′y. The SUR estima-
tor that accounts for interrelations between the single submodels can be obtained by β SUR =[
X
′
Ω−1X

]−1 [
X
′
Ω−1Y

]
, where Ω−1 is a weighting matrix based on the covariance matrix of

the error terms Σ. This covariance matrix Σ = [σi j] has the elements σi j = E [εinε jn], where εin

is the error term of the nth observation of the ith equation. Finally, the inverse of the weighting
matrix can be calculated by Ω = Σ⊗ IN , where IN is an N×N identity matrix and ⊗ denotes the
Kronecker product. However, as the true error terms ε are unknown, they are often replaced by
observed residuals, e.g. obtained from OLS estimates, i.e. ε̂i = yi−Xiβ

OLS
i so that the elements

of the covariance matrix can be calculated by4

σ̂i j =
ε̂ ′i ε̂ j

N
. (3)

Thus, a SUR model is an application of the generalized least squares (GLS) approach and the
unknown residual covariance matrix is estimated from the data.

2.2.3. Models for carcass composition

The OLS estimates are obtained while ignoring any correlation between the error terms of
different equations. However, if the error terms are contemporaneously correlated, as is most

4Other possibilities for calculating the covariance matrix of the error terms are described in, e.g. Henningsen and
Hamann (2007).
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likely in the case of carcass composition studies, the estimation procedure should take this into
account. In this case, the SUR estimator leads to efficient parameter estimates (Yahya et al.,
2008).

Our base model for carcass composition (“C12+E2”) consists of five single equations to
simultaneously predict the LMP, SFP, IFP, BP and KCFP of lamb carcasses:

LMP = α0 +α1 HCW +α2 C12+α3 E2+ ε1 (4)

SFP = β0 +β1 HCW +β2 C12+β3 E2+ ε2 (5)

IFP = γ0 + γ1 HCW + γ2 C12+ γ3 E2+ ε3 (6)

BP = δ0 +δ1 HCW +δ2 C12+δ3 E2+ ε4 (7)

KCFP = θ0 +θ1 HCW +θ2 C12+θ3 E2+ ε5 (8)

In this model α j, β j, γ j, δ j and θ j; j ∈ {0,1,2,3} are the regression coefficients to be esti-
mated and εi; i∈ {1, . . . ,5} are the error terms in the models for the lean meat proportion (LMP),
subcutaneous fat proportion (SFP), intermuscular fat proportion (IFP), bone plus remainders pro-
portion (BP), and kidney knob and channel fat proportion (KCFP), respectively.

Furthermore, our analysis includes the sub-model “C12” with α3 = β3 = γ3 = δ3 = θ3 = 0, i.e.
without the explanatory variable E2, and the sub-model “E2” with α2 = β2 = γ2 = δ2 = θ2 = 0,
i.e. without the explanatory variable C12. Of course, there are myriad further sub-models, e.g.
with explanatory variable “C12” removed in some equations and explanatory variable “E2” re-
moved in some other equations. However, we do not consider these sub-models in our analysis,
because they would require the slaughterhouse to take two measures of carcass fat depth and
hence, would cause the same costs as the full model “C12+E2”. In contrast, our two submodels
“C12” and “E2” are each based on a single measure of carcass fat depth and hence, would cause
significantly lower costs. Therefore, submodels “C12” and “E2” are much more likely to be im-
plemented in slaughterhouses than submodels that include both “C12” and “E2” as explanatory
variables.

Our models for carcass composition should be generally applicable in the slaughterhouses
and hence, they should be independent of breeds. We will use statistical tests to check whether
the model estimates dependent on the breed.

3. Results and Discussion

3.1. Descriptive statistics

The mean values, standard deviations (SD), coefficients of variation (CV), minimum and
maximum values along with the correlation coefficients among HCW, C12, E2, LMP, SFP, IFP,
BP and KCFP are shown in Table 1. All carcass proportions had low (absolute) variations
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(SD≤ 2.86) and the LMP had the lowest relative variation (CV = 4.7%). In contrast, C12 was
the variable with the highest CV (45.4%). The HCW had a low and statistically insignificant
correlation with the C12 measurement (r = 0.13) and a moderate positive correlation (r = 0.52)
with E2. These results are in agreement with the low variability of the LMP observed by Silva
(2001) and Cadavez (2009), and this small variation in the carcasses’ LMP was pointed out as the
main constraint to prediction models with high determination coefficient (Fortin and Sherestha,
1986; Silva, 2001; Cadavez, 2009), since this statistic is highly influenced by the variation of the
dependent variable (Chatterjee et al., 2000).

3.2. Results of OLS and SUR estimations

The estimated parameters and summary statistics for the three models “C12”, “E2”, and
“C12+E2” are presented in Table 2. Given that the same regressors were used in each equation,
OLS and SUR estimations result in identical estimates of the coefficients and their standard er-
rors (Zellner, 1962, p. 351). As the dependent variables sum up to 100% at each observation and
exactly the same regressors were used in each equation, the covariance matrix of the residuals
becomes singular. Hence, the weighting matrix of the SUR estimator cannot be inverted so that
a SUR estimation of all five equations becomes infeasible. However, an arbitrary equation can
be dropped and the system can be estimated with the remaining four equations. After the estima-
tion, the parameters of the dropped equation can be retrieved by the “adding-up” restriction, i.e.
the intercepts of all five equations have to sum to 100% and the parameters of each explanatory
variable (except for the constant) have to sum to zero. The variances and covariances of the
parameters of the omitted equation can be calculated by the delta method. The estimated param-
eters and their variances and covariances do not usually depend on the equation that is dropped.
However, as all five equations can be estimated by OLS and these estimates coincide with SUR
estimates in our current model specification, there is no advantage of using SUR over OLS for
estimating these models.

As expected, the general model “C12+E2” gives the best overall fit, indicated by the highest
McElroy-R2 (0.476), followed by model “E2” (0.399), while model “C12” presents the lowest
McElroy-R2 (0.292). These results indicate that total breast bone tissue thickness (E2) explains
a higher proportion of carcass composition than subcutaneous fat thickness (C12), but both mea-
sures together explain the largest proportion. This means that both of the carcass fat depth mea-
surements, C12 and E2, are relevant determinants of tissue proportions in lamb carcasses, which
is in accordance with the results attained by Cadavez (2009). Our results also confirmed those
attained by Hopkins et al. (2008) and Hopkins (2008), who showed that HCW alone is unable to
explain the LMP.

When looking at the goodness of fit of the individual equations, it becomes apparent that
model “C12” (i.e. with explanatory variables HCW and C12) has the lowest coefficients of de-
termination of estimation

(
R2

e
)

in four out of five equations (LMP, SFP, IFP, and KCFP). For in-
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stance, model “C12” can only explain a very limited variation of LMP (R2
e = 0.140), while model

“E2” (R2
e = 0.425) performs much better, while the general model “C12+E2” (R2

e = 0.425) is not
(noticeably) better than model “E2”.

As the correlation between the two fat measurements (C12 and E2) is moderately high
(r = 0.51), the general model “C12+E2” is somewhat plagued by multicollinearity between its
regressors. This results in less precise parameter estimates and can be seen by increased standard
errors and lower coefficients of determination of prediction

(
R2

p
)
. In fact, the standard errors of

the regression coefficients and the standard errors of the estimates (SEE) are often larger in the
general model “C12+E2” than in the specific model “E2”. Moreover, the predictive ability of
model “E2” measured by the coefficient of determination of prediction

(
R2

p
)

is even better than
the predictive ability of the general model “C12+E2” for three out of five equations (LMP, IFP,
KCFP).

As models “C12” and “E2” are nested in model “C12+E2”, we can apply an F-Test on the
general model “C12+E2” to test the restrictions implied by models “C12” and “E2”. While
model “C12” is clearly rejected in favour of the general model “C12+E2”, model “E2” is not
significantly worse than the general model “C12+E2”. Hence, given the costs of taking two
measures of carcass fat depth (C12 and E2), model “E2” is probably the most cost-effective
predictor of LMP for slaughterhouse applications since it is based on a single fat measurement
(E2) and is not significantly worse in predicting lamb carcass composition than the more costly
model “C12+E2”.5 As slaughterhouses would only implement a new prediction model if it can
be done easily and at low cost, the inclusion of a second fat measurement in the prediction model
cannot be justified because of the resulting economic cost.

We used F-tests to check whether the models depend on the breed. These tests confirmed
that the estimated parameters of model “C12+E2” and submodel “E2” do not significantly differ
between the breeds (P values 0.20 and 0.09, respectively), while the estimated parameters of
submodel “C12” significantly differ between the breeds (P value 0.001). Hence, we can conclude
that our “preferred” model “E2” is suitable for both breeds in our sample.6

The correlations between the residuals of our “preferred” model “E2” are shown in Table 3.
This table indicates that several equations are highly or moderately interrelated. For instance,
the first equation (LMP) is highly interdependent with the second equation (SFP, r = −0.709)
and the third equation (IFP, r =−0.670) and moderately interdependent with the fourth equation
(KCFP, r = −0.505). As the OLS approach does not take these interrelationships into account,
the OLS estimates should be inefficient (not as precise as possible). However, as we use exactly
the same explanatory variables in each equation, OLS estimates coincide with SUR estimates

5Furthermore, due to the larger maginitude of the E2 measure (mean = 16.4 mm), it is easier to measure and more
robust to measurement errors than the C12 measure (mean = 1.3 mm).

6Given the small number of observations for each breed (n = 22 and n = 18, respectively), we suggest to scrutinize
this result with larger samples in the future.
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and hence, are not negatively affected by the contemporaneous correlation of the error terms.
Given that some of the estimated parameters of our “preferred” model “E2” are statistically

non-significant and that the inclusion of non-significant explanatory variables generally reduces
the precision of the estimates, we tried to improve the precision of our estimates by removing
non-significant regressors. Thus, we re-estimated model “E2” after removing all regressors that
were not significant at the 20% level. We chose a rather high threshold as we wanted to be
cautious and avoid removing relevant explanatory variables.7 As this adjusted version of model
“E2”, say “E2a”, no longer has the same explanatory variables in all equations, OLS estimates
differ from SUR estimates and all five equations can be included in the SUR regression. The
OLS and SUR estimates as well as summary statistics are shown in Table 4. An F-Test applied to
model “E2” shows that the three parameters that have been removed in model “E2a” are jointly
not statistically significant. Hence, model “E2a” is not significantly worse than model “E2”. The
Shapiro-Wilk statistic shows that for both estimators (OLS and SUR) the single-equation residu-
als have zero mean and follow a normal distribution (data not shown). As the McElroy-R2 is not
intended for OLS regressions and the McElroy-R2 values for model “E2a” are—in contrast to the
models shown in Table 2—based on all five equations, we cannot make reasonable comparisons
using the McElroy-R2 of model “E2a” here. Given that the OLS estimation ignores interrela-
tions between equations, the OLS estimates differ between model “E2” and model “E2a” only
if an explanatory variable is removed in the respective equation, i.e. in the equations for SFP
and KCFP. In contrast, the SUR estimator accounts for contemporaneous correlations among the
equations and hence, the SUR estimates of all equations differ between model “E2” and model
“E2a”. Furthermore, the efficiency of the SUR estimates compared to the OLS estimates is ex-
pected to increase in the presence of highly correlated covariates (Yahya et al., 2008), which is a
common feature of carcass composition data. Since all tissues are taken in the same experimen-
tal unit (the carcass), the measurements are correlated with each other (multicolinear data) as
shown by Cadavez (2009). Hence, the parameters obtained by SUR are characterized by lower
standard errors. As the error terms for LMP have the highest correlations with other error terms,
the reduction of the standard errors is especially visible in this equation: the SE of the intercept
decreases by 30% and the SE of the parameter of HCW decreases by 20%. Thus, modeling the
carcass composition of lambs while ignoring the residuals variance-covariance structure results
in inefficient estimates (Yahya et al., 2008).

Given that the OLS estimates of the unchanged equations are the same in model “E2” and
model “E2a”, the coefficients of determination of prediction R2

p are also the same for these equa-
tions. While the removal of the intercept in the equation for SFP increased the R2

p by 2.3%, the
removal of the intercept and HCW in the equation for KCFP reduced the R2

p by 1.8%. When
estimating model “E2a” by SUR instead of by OLS, the R2

p values for LMP and IFP increase

7In fact, we would remove exactly the same explanatory variables if we had any threshold between 11% and 35%.
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by 1.9% and 1.3%, respectively, while the R2
p values for SFP and BP only decrease by 0.8%

and 0.3%, respectively. Hence, estimating model “E2a” by SUR slightly improves the average
precision of the predictions. Furthermore, the smaller SE of the parameter estimates obtained
by the SUR estimator also indicate a (slight) superiority of this estimator. Given that this study
is only based on a small sample and that the advantages of the SUR estimator increase with the
sample size (Yahya et al., 2008), our results indicate that the SUR estimator has a clear potential
for generating better models for predicting carcass composition.

We have also estimated all models by iterative seemingly unrelated regression (ITSUR),
which is equivalent to the maximum likelihood (ML) method (Park, 1993). As the ITSUR esti-
mates were virtually identical to the SUR estimates, we do not show them here.

The correlations of the residuals obtained from estimating model “E2a” by OLS and SUR
are shown in Table 5.

4. Conclusion

This paper presents a novel approach to simultaneously predict carcass components using
the SUR technique and the results are relevant for implementing objective carcass classification
systems. The SUR estimator provides the lowest standard errors of the estimated parameters and
thus, the highest precision of the estimates, since it takes the correlation between the error terms
into account. The results of our study revealed that the HCW and E2 measurement are the most
relevant predictors of carcass tissues. However, for different lamb populations (other breeds or
production systems) or for lambs slaughtered at considerably different carcass weights, the per-
formance of the predictors might be different. Thus, specific studies should be undertaken in
order to test and select the best models and predictors for predicting carcass proportions of dif-
ferent lamb populations. Our findings can have a positive effect on the meat industry, since the
methodology applied to predict the carcass composition (using the E2 or other LMP predictors)
can improve decision support systems by using the proportions of all carcass tissues to deter-
mine the price as well as the optimal processing (e.g. refrigeration conditions) of the carcasses.
Furthermore, the SUR estimates result in more precise predictions of the proportions of carcass
components than the OLS (equation-by-equation) estimates. Thus, SUR is a robust methodology
for predicting the carcass composition of lambs. In spite of the elegant properties of the SUR
estimator, it is an underused multivariate regression technique, especially for predicting carcass
composition. Indeed—as far as we know—it has not been used for this purpose before.
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Table 1: Descriptive statistics and correlations among HCW, C12, E2, LMP, SFP, IFP, BP, and KCFP
Descriptive statistics Correlations

Variable Mean SD Min Max CV C12 E2 LMP SFP IFP BP KCFP

HCW, kg 12.2 1.98 8.0 15.0 15.7 0.13ns 0.52* -0.14ns 0.20ns 0.47* -0.55* 0.31ns

C12, mm 1.3 0.59 0.35 2.5 45.4 1 0.51* -0.36* 0.63* 0.25* -0.41* 0.42*

E2, mm 16.4 3.46 7.8 24.3 21.1 1 -0.61* 0.77* 0.52* -0.52* 0.75*

LMP, % 61.4 2.86 57.7 66.8 4.7 1 -0.84* -0.69* 0.14ns -0.73*

SFP, % 4.9 1.73 1.5 8.2 35.3 1 0.56* -0.44* 0.82*

IFP, % 9.1 1.85 3.6 12.9 20.3 1 -0.63* 0.55*

BP, % 23.3 1.78 20.2 27.5 7.6 1 -0.48*

KCFP, % 1.4 0.50 0.38 2.2 35.7 1
ns - non signficant (P>0.05); * - significant (P≤0.05)
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Table 3: Residuals correlations for model ”E2” estimated by ordinary least squares method (OLS)
LMP SFP IFP KCFP BP

LMP 1 -0.709 -0.670 -0.505 -0.189
SFP 1 0.445 0.569 -0.242
IFP 1 0.337 -0.446
KCFP 1 -0.229
BP 1
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Table 5: Residuals correlations for model ”E2a” estimated by OLS and SUR estimators
OLS SUR

LMP SFP IFP KCFP BP LMP SFP IFP KCFP BP

LMP 1 -0.708 -0.670 -0.482 -0.189 1 -0.714 -0.673 -0.514 -0.179
SFP 1 0.444 0.538 -0.241 1 0.452 0.574 -0.248
IFP 1 0.323 -0.446 1 0.345 -0.449
KCFP 1 -0.229 1 -0.236
BP 1 1
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