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Abstract In the estimation of multiple output technologies in a primal approach, the main
question is how to handle the multiple outputs. Often, an output distance function is used,
where the classical approach is to exploit its homogeneity property by selecting one output
quantity as the dependent variable, dividing all other output quantities by the selected out-
put quantity, and using these ratios as regressors (OD). Another approach is the stochastic
ray production frontier (SR), which transforms the output quantities into their Euclidean
distance as the dependent variable and their polar coordinates as directional components as
regressors. A number of studies have compared these specifications using real world data
and have found significant differences in the inefficiency estimates. However, in order to get
to the bottom of these differences, we apply a Monte-Carlo simulation. We test the robust-
ness of both specifications for the case of a Translog output distance function with respect to
different common statistical problems as well as problems arising as a consequence of zero
values in the output quantities.
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Although our results show clear reactions to some statistical misspecifications, on av-
erage none of the approaches is clearly superior. However, considerable differences are
found between the estimates at single replications. Taking average efficiencies from both
approaches gives clearly better efficiency estimates than taking just the OD or the SR. In
the case of zero values in the output quantities, the SR clearly outperforms the OD with
observations with zero output quantities omitted and the OD with zero values replaced by a
small positive number (ODz).

Keywords Multiple Outputs · SFA ·Monte Carlo Simulation · Stochastic Ray Production
Frontier · Output Distance Function

JEL Classification: C21 · C40 · D24

1 Introduction

Input and output distance functions and their parametric estimation form, foremost the
stochastic frontier function (SFA), are widely applied instruments to measure productiv-
ity when technical inefficiency is taken into account. In the case of multiple outputs—given
that the underlying production technologies differ significantly—it is common to use a dual
approach and to estimate either a cost function, a profit function, or a system of shadow
price equations. In cases where standard economic assumptions such as cost minimisation
or profit maximisation do not hold, e.g. in some public sector services, or if price data are not
available or unvarying, a primal approach to estimate multiple output production functions
is an attractive option.

The difficulty with the estimation of output distance functions for multiple outputs is that
there is no natural choice of a dependent variable (Kumbhakar and Lovell 2000). Therefore,
it is common to select one output quantity, say yM , as the dependent variable and to use
the normalised other output quantities ym/yM as explanatory variables (in addition to the
inputs). Alternatively, Kumbhakar and Lovell (2000) suggested using the output norm ||y||
as the dependent variable and the correspondingly normalised output quantities ym/||y|| as
explanatory variables. Taking the latter approach into consideration, Löthgren (1997, 2000)
introduced a further somewhat different concept to handle multiple outputs in the same
framework by introducing the multiple-output stochastic ray frontier production function. In
this specification, the simple ratios ym/||y|| are replaced by polar coordinates, i.e. replacing
the Cartesian coordinates by polar coordinates. To the authors’ knowledge, these different
normalisation approaches have only been compared using real world data (e.g. Whiteman
1999; Fousekis 2002; Zhang and Garvey 2008), and although efficiency estimates showed
considerable deviations (e.g. Zhang and Garvey (2008) find mean deviations of up to 22 %),
it is still unclear which approach performs better.

In order to get to the bottom of these empirical findings, we compare the performance
of the classical normalisation approach with one output with the multiple-output stochastic
ray frontier approach by means of a Monte Carlo simulation. We test the reaction of both
approaches given several common data problems, e.g. endogeneity of the regressors, het-
eroscedasticity of the inefficiency term and noise term, or zero values in the output data of
some observations.

The article is structured as follows: section two provides a short overview of the two
normalisation concepts compared in the Monte Carlo simulation; section three describes the
data generating process and the design of the Monte Carlo simulation; section four presents
and discusses the results; and finally section five concludes.
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2 Estimating multiple output distance functions in a primal approach

Following Kumbhakar and Lovell (2000, chap. 3.2.3.), the output distance function for mul-
tiple outputs can be estimated by applying the approach used in Stochastic Frontier Analysis
(SFA). Starting from the SFA in the single-output case y = f (x;β ) · exp{v−u}, where y is
the output quantity, x is a vector of input quantities, β is a corresponding vector of param-
eters, and exp{v− u} is an error term decomposed into a noise term v and an inefficiency
term u. By exploiting the fact that in the single output case y/ f (x) = δ (x,y), with δ (x,y) the
Shepardian distance function, one can rewrite the stochastic frontier model for the multiple-
output case as

1 = δ (x,y) · exp{u− v} (1)

As δ (x,y)≤ 1, exp{u− v} ≥ 1 can be used as a reciprocal measure of technical efficiency.
There are now two possibilities to convert equation (1) into an estimable regression model:

1. By utilising the property of homogeneity of degree one in outputs δ (x,λy) = λδ (x,y)
∀ λ > 0 and setting λ to y−1

M (e.g. Coelli and Perelman 1996; Fuentes et al 2001), one
yields δ (x,y/yM) = y−1

M · δ (x,y) which leads to δ (x,y) = yM · δ (x,y/yM). By inserting
the last equation into equation (1) and dividing by yM the final estimation equation is
denoted by

y−1
M = δ

(
x,

y
yM

)
· exp{u− v} (2)

2. Another alternative is the stochastic ray production frontier developed by Löthgren
(2000). Multiple outputs are modelled by decomposing the vector of M output quan-
tities y = ||y|| · p(ϑ) into a scalar distance component, the Euclidean distance ||y|| =(
∑

M
m=1 y2

m
)1/2, and a vector of directional measures p(ϑ) with ϑ = (ϑ1, . . . ,ϑM−1) a

vector of polar coordinates where ϑm ∈ [0,π/2]M−1 ∀ m = 1, . . . ,M− 1 and sin(ϑ0) =
cos(ϑM) = 1, and with p : [0,π/2]M−1→ [0,1]M a function which transforms the polar-
coordinate angle vector ϑ to the output-mix vector p(ϑ) = y/||y||, with norm ||p(ϑ)||=
1. The directional vector is measured as

pm(ϑ) =
ym

||y||
= cos(ϑm)

M−1

∏
j=0

sin(ϑ j) ∀ m = 1, . . . ,M

and ϑ is recursively defined by

ϑm(y) = arccos

(
ym/

[
||y||

M−1

∏
j=0

sinϑ j

])
∀ m = 1, . . . ,M.

The output distance function can then be expressed as

ω(x,y) = ||y||/|| f (x,ϑ)p(ϑ)||= ||y||/ f (x,ϑ)

with f (x,ϑ) = sup(||y|| | ||y|| · p(ϑ) ∈ P(x)), with P(x) the output set defined by the
technology P : x→ y. Inserting the upper definition into equation (1) yields

||y||= f (x,ϑ(y)) · exp{v−u} (3)
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Expressing the output distance functions in (2), and (3) in parametric form by apply-
ing the flexible Translog form for n = 1, . . . ,N inputs and m = 1, . . . ,M outputs gives the
following specifications

− ln(yM) =α0 +
M−1

∑
m=1

αm ln(ym/yM)+0.5
M−1

∑
m=1

M−1

∑
j=1

αm j ln(ym/yM) ln(y j/yM) (4)

+∑
n

βn ln(xn)+0.5∑
n

∑
l

βnl ln(xn) ln(xl)

+
M−1

∑
m=1

∑
n

γmn ln(ym/yM) ln(xn)+u− v

and

ln(||y||) = α0 +
M−1

∑
m=1

αmϑm +0.5
M−1

∑
m=1

M−1

∑
j=1

αm jϑmϑ j +∑
n

βn ln(xn) (5)

+0.5∑
n

∑
l

βnl ln(xn) ln(xl)+
M−1

∑
m=1

∑
n

γmnϑm ln(xn)−u+ v,

where α0 is a scalar intercept, α = [αm], m = 1, . . . ,M− 1 and β = [βn], n = 1, . . . ,N are
vectors of first-order parameters and A= [αm j], m, j = 1, . . . ,M−1, B= [βnl ], n, l = 1, . . . ,N,
and C = [γmn], m= 1, . . . ,M−1, n= 1, . . . ,N are matrices of second-order parameters, where
A and B are symmetric, i.e. αm j = α jm ∀ m, j = 1, . . . ,M−1 and βnl = βln ∀ n, l = 1, . . . ,N.
As in the usual single-output stochastic production frontier, it is assumed that the noise
term v follows a normal distribution with mean 0 and variance σ2

v and the inefficiency term
u follows a positively truncated normal distribution (unless other distributional forms are
assumed).

3 Data generating process and design of the Monte Carlo simulation

It is apparent that the functional forms defined in equation (4) and (5) are not nested into
each other. By choosing either equation (4) or (5) as the data generating process (DGP) one
would discriminate against the other functional form. Therefore, following Färe et al (2010)
both functional forms, (4) and (5), are chosen for the DGP to test the robustness of either
specification.

We run the simulation with a simple setting of two input variables xn with n = 1,2, and
two output variables ym with m = 1,2. We follow the procedure suggested by Perelman and
Santin (2009) to generate the data for the Monte Carlo (MC) simulation. In the first step,
the parameters of functions (4) and (5) are chosen. The parameters of function (4) are taken
from Perelman and Santin (2009) as a base-line scenario. These parameters—given that
the explanatory variables are within specific ranges—fulfil the regularity conditions of the
output distance function, i.e. homogeneous of degree one in outputs; convex and continuous
in outputs and quasi-convex in inputs; and non-decreasing in y and non-increasing in x. With
this set of parameters, the technology exhibits increasing returns to scale (IRS), whilst input-
output separability (IOS) is not fulfilled. Further sets of parameters are chosen so that input-
output separability (IOS) is fulfilled, i.e. γmn = 0 ∀m = 1, . . .M−1,n = 1, . . . ,N, and/or the
technology exhibits constant returns to scale (CRS), i.e. ∑n βn = 1 and ∑n βnk = 0 ∀ k =
1, . . . ,N. The parameters of these specifications as well as the parameters of the Translog
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ray production frontier (5) are chosen in a way that the levels and—as far as possible—the
first and second derivatives are equal at the sample mean among all 8 specifications. The
eight specifications regarding the parameters are summarised in Table 1.

Table 1 Variation of DGP specifications

Nr Approach Form

1.1

eq. (2)

Translog (4), CRS, IOS
1.2 Translog (4), CRS, no IOS
1.3 Translog (4), IRS, IOS
1.4 Translog (4), IRS, no IOS

1.5

eq. (3)

Translog (5), CRS, IOS
1.6 Translog (5), CRS, no IOS
1.7 Translog (5), IRS, IOS
1.8 Translog (5), IRS, no IOS

Secondly, following Perelman and Santin (2009), the input quantities are sampled from
a uniform distribution over the interval [5,50]. This ensures that the regularity conditions are
fulfilled, because they are fulfilled—given the chosen parameters—if the logarithmic input
ratios lie in the interval | lnx2− lnx1| ≤ 2.5. The logarithmic output ratios are sampled from
a uniform distribution in a way that they lie in the interval | lny2− lny1| ≤ 1.5. Thirdly, the
inefficiency terms u are sampled from a half-normal distribution u ∼ |N(0,σ2

u )|. The noise
terms vm are sampled from a normal distribution vm ∼ N(0,σ2

v ). Given the generated input
quantities and output ratios and the chosen parameters, the “deterministic” fully efficient
output quantities y∗ are calculated using equation (4) and equation (5). The sampled output
ratios enter ϑ in equation (5) as

ϑ1 = arccos

 y1√
y2

1 + y2
2

= arccos

(
1√

1+ exp(2 (ln(y1)− ln(y2))

)
(6)

with ln(y1)− ln(y2) being the sampled logarithmic output ratios. Finally, the noise term
and the inefficiency term are subjoined to the y∗ in order to obtain the “observed” output
quantities:

ym = y∗m exp(v−u). (7)

A total population of 2,500 observations is generated based on randomly drawn variables
as described above. Then, in each replication of the Monte Carlo simulation, a new sample
of 25, 100, or 200 observations is drawn from the population and used for the estimations.

We impose the following specifications on the basic setting to test the robustness of both
approaches:1

1. Variation of sample size:
As the quality of the estimates varies with the sample size, we use three different sample
sizes: 25, 100, and 200 observations.

1 In earlier versions of the analysis we also tested other scenarios, i.e. omitted variables, multicollinearity,
different distributions of the inefficiency term, different variances of the noise term, and using a CES-CET
multiple-output production function as a data generating process instead of a standard Translog output dis-
tance function or a Translog ray production function. Both specifications performed equally well in all these
scenarios.
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2. Different ratios of the standard errors of the error terms:
σ2

u is set to 0.05 and 0.8 so that the average “true” efficiencies are around 86% and 56%,
respectively. With σ2

v = 0.05, the ratio σu/σv is equal to 1 and 4, respectively (Jensen
2005).

3. Different distributions of the noise term:
the noise term is simulated either with a normal distribution v ∼ N(0,σ2

v ) or with a
t-distribution v∼ t(0,σ2

v ,15).
4. Correlation of the output ratios with the noise term v and the inefficiency term u:

A potential problem with the estimation form of the output distance function is that the
output ratios appear as regressors in the estimation equation. This could lead to incon-
sistent parameter estimates, as the output ratios might well be endogenous regressors.
For instance, this happens when inefficiency and noise affect the different outputs dif-
ferently (Roibás and Arias 2004). Inconsistent estimates of the model parameters will in
turn have an impact on the estimation of the efficiency term u and might lead to the un-
der or overestimation of the efficiency. As this problem can have different occurrences
given the individual observations, this effect will both inflict damage on the ranking as
well as the level of the individual efficiencies. To test whether the endogeneity of the
output-regressors has an impact on the estimation of the efficiency term, our MC sim-
ulation includes scenarios with different noise terms and inefficiency terms for the two
output quantities.

5. Impact of returns to scale and input-output separability:
Following Kumbhakar (2011) non-constant returns to scale and missing input-output
separability aggravate endogeneity problems. Therefore, the technology is modelled
with constant returns to scale and variable returns to scale, as well as with fulfilled
and unfulfilled input-output separability.

6. Heteroscedasticity of the noise term and inefficiency term:
Following Jensen (2005) we either impose heteroscedasticity of the noise term v∗ by
v∗ = v ·exp{δ0 +δ1 x1 +δ2 x2}, or heteroscedasticity of the inefficiency term u∗ by u∗ =
u ·exp{δ0 +δ1 x1 +δ2 x2}, where δ0, δ1, and δ2 are chosen so that the mean of exp{δ0 +
δ1 x1 +δ2 x2} is approximately one.

7. Zero output quantities:
Finally, to test the sensitivity of both specifications towards zeros in the output values,
an increasing share of zero valued output observations is introduced into the data, i.e.
0.05, 0.1, 0.3. As it is not possible to generate zero valued outputs with the equation (4),
the DGP with zero output quantities will be entirely based on equation (5).

As both approaches use different specifications, a direct comparison of parameter es-
timates is futile. Therefore, following Coelli and Perelman (2000), the comparison of the
quality of the estimates is limited to the efficiency estimates of both approaches.2 For the

2 We calculate the efficiency estimates as E[exp(−u)] (Jondrow et al 1982; Battese and Coelli 1988). In
cross-sectional settings—as in our simulation study—stochastic frontier approaches cannot produce consis-
tent efficiency estimates (see e.g. Ondrich and Ruggiero 2001). Therefore, it could be argued that we could
estimate the models by corrected OLS (COLS) rather than by maximum likelihood (SFA). In cross-sectional
settings, the performance of both COLS and SFA deteriorates with decreasing inefficiency-to-noise ratio
λ = σu/σv. However, the simulation study of Jensen (2005, p. 230/231) showed that the relative performance
is a bit more complicated. Regarding absolute differences to the ‘true’ inefficiencies of the DGP, SFA out-
performs COLS uniformly in the face of λ ≤ 1, because COLS treats the—then relatively large—amount of
noise as inefficiency. With larger λ , SFA needs larger sample sizes n to win this competition against the very
simple COLS approach, e.g. λ = 8 requires n≥ 500. Regarding inefficiency ranks (correlations with or abso-
lute differences to the true ranks in the DGP), the performances of SFA and COLS are mostly rather similar.
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comparison between the true and the estimated efficiencies, we calculated the following
performance measures for each replication:

1. the median absolute deviation (MAD) between the estimated and the true efficiencies:
median(|êi− ei|), where êi is the estimated efficiency, ei is the true efficiency, and sub-
script i indicates the observation.3

2. the average bias of the estimated efficiencies: nObs−1
∑i(êi − ei), where nObs is the

number of observations.
3. the Spearman rank correlation coefficient between the estimated and the true efficien-

cies (e.g. Gong and Sickles 1992; Ruggiero 1999; Jensen 2005), as the ranking of the
efficiencies is often of more interest than the absolute values.

Finally, we calculated the average values of these performance measures over all replications
within one scenario or within a group of scenarios.

Additionally, we generated WAIRDIPs (Weighted Absolute Inefficiency Rank DIffer-
ence Plot), where the absolute differences in the ranking of the true and estimated efficien-
cies are averaged over replications and weighted with the sample size (Jensen 2005).

4 Results

The Monte Carlo experiment was conducted in the statistical programming language “R” (R
Core Team 2014) using the add-on package “frontier” (Coelli and Henningsen 2013) for the
stochastic frontier estimations. The simulation includes 594 scenarios, and we conducted
500 replications per scenario.

First we look at the scenarios in which all output quantities are strictly positive so that
the standard Translog output distance function (4) can be applied to all the observations
without modifications. The median absolute deviations, the average biases, and the rank
correlation coefficients between the estimated efficiencies and the “true” efficiencies are
presented in Tables 2–4. These performance measures are presented as mean values over
all 576 scenarios (288,000 replications) and as mean values over scenarios with specific
properties of the data generating process—for efficiency estimates derived from the standard
Translog output distance function (4), abbreviated as “OD,” for efficiency estimates derived
from the Translog stochastic ray production frontier (5), abbreviated as “SR”, and for the
arithmetic means of the efficiency estimates derived from the OD and the SR, abbreviated
as “am”. Furthermore, Tables 2–4 present P-values for the tests of significant differences
between different properties of the data generating process (obtained by an ANOVA with
interaction terms) and P-values for two-sided “paired t-tests” for differences in the average
performance of the efficiencies obtained by OD, SR, and am.

This difference in results between inefficiency levels and inefficiency ranks is due to the advantage of the SFA
in estimating the constant (or its attempt to decompose the composed error into noise and inefficiency). As
SFA panel data models can provide consistent efficiency estimates, we considered extending our simulation
study to panel data, but we abstained from this extension, because many different panel data specifications
for SFA models exist (see e.g. Kumbhakar et al 2014) so we would either have had to arbitrarily choose a
specific panel data specification or our simulation study would have extended to an analysis of the many
different panel data specifications for SFA models, which is clearly beyond the scope of our current study.

3 We also calculated the mean absolute deviation (MD) between the estimated and the true efficiencies
(as, e.g., done by Andor and Hesse 2014): nObs−1

∑i |êi− ei|, where nObs is the number of observations.
However, we do not present the calculated MDs, because the relative performance of the estimators according
to the MDs was very similar to the relative performance of the estimators according to the MADs.
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Table 2 Median absolute deviations

mean values P values
OD SR am OD-SR OD-am SR-am

all scenarios 0.1277 0.1278 0.1267 0.4053 0.0000 0.0000
OD 0.1274 0.1274 0.1264 0.2132 0.0000 0.0000
SR 0.1281 0.1281 0.1271 0.9583 0.0000 0.0000
P-value 0.0080 0.0232 0.0085
CRS 0.1277 0.1277 0.1267 0.9941 0.0000 0.0000
IRS 0.1277 0.1278 0.1268 0.2414 0.0000 0.0000
P-value 0.8532 0.5928 0.6348
IOS 0.1279 0.1279 0.1269 0.8292 0.0000 0.0000
non-IOS 0.1275 0.1276 0.1265 0.3346 0.0000 0.0000
P-value 0.1261 0.1908 0.1246
no heterosced. 0.1260 0.1256 0.1250 0.0003 0.0000 0.0000
heterosc. in u 0.1238 0.1237 0.1228 0.2277 0.0000 0.0000
heterosc. in v 0.1333 0.1339 0.1325 0.0000 0.0000 0.0000
P-value 0.0000 0.0000 0.0000
v norm. distr. 0.1265 0.1262 0.1254 0.0001 0.0000 0.0000
v t-distributed 0.1289 0.1293 0.1281 0.0000 0.0000 0.0000
P-value 0.0000 0.0000 0.0000
u & v the same 0.1187 0.1187 0.1176 0.3581 0.0000 0.0000
u & v different 0.1367 0.1368 0.1359 0.7167 0.0000 0.0000
P-value 0.0000 0.0000 0.0000
σ2

u = 0.05 0.0983 0.0985 0.0974 0.0000 0.0000 0.0000
σ2

u = 0.8 0.1571 0.1570 0.1561 0.4183 0.0000 0.0000
P-value 0.0000 0.0000 0.0000
nObs = 25 0.1809 0.1810 0.1786 0.7172 0.0000 0.0000
nObs = 100 0.1074 0.1074 0.1069 0.1389 0.0000 0.0000
nObs = 200 0.0948 0.0948 0.0947 0.6041 0.0000 0.0000
P-value 0.0000 0.0000 0.0000

The functional form (OD or SR) that is used in the data generating process has only a
very small influence on the precision of the estimated efficiencies. When the output quan-
tities are generated by the OD, the estimated efficiencies are slightly more precise and less
biased, but the ranking is less precise, regardless of whether the efficiencies are estimated by
the OD or the SR. Although non-constant returns to scale and missing input-output separa-
bility should theoretically result in inconsistent estimates (Kumbhakar 2011), we found that
these properties of the technology did not have an effect on the precision of the estimated
efficiencies.

While heteroscedasticity in the noise term v clearly reduces the precision of the effi-
ciency estimates, heteroscedasticity in the inefficiency term u reduces the rank correlation
coefficient, but also reduces the median absolute deviation and the bias, which indicates that
heteroscedasticity in the noise term v is more severe than heteroscedasticity in the ineffi-
ciency term u.

As the estimation assumes normally distributed noise terms, generating the noise terms
from a t-distribution clearly reduces the precision of the estimates. Similarly, when the noise
term and the inefficiency term differ between the two output quantities, the precision of
the efficiency estimates deteriorates, as this causes an endogeneity bias (Roibás and Arias
2004). This endogeneity problem has a very large effect on the (average) bias. Indeed, the
over-estimation of the efficiencies almost disappears when this problem does not occur.

The variance of the inefficiency term u has a major influence on the performance of the
efficiency estimates. While a larger variance of the inefficiency term u, and hence smaller
average efficiencies, increases the median absolute deviation, the mean absolute deviation
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Table 3 Average biases

mean values P values
OD SR am OD-SR OD-am SR-am

all scenarios 0.0708 0.0704 0.0706 0.0000 0.0000 0.0000
OD 0.0696 0.0693 0.0695 0.0009 0.0009 0.0009
SR 0.0719 0.0715 0.0717 0.0000 0.0000 0.0000
P-value 0.0000 0.0000 0.0000
CRS 0.0707 0.0703 0.0705 0.0000 0.0000 0.0000
IRS 0.0708 0.0705 0.0706 0.0007 0.0007 0.0007
P-value 0.8719 0.7230 0.7928
IOS 0.0709 0.0705 0.0707 0.0000 0.0000 0.0000
non-IOS 0.0706 0.0703 0.0705 0.0022 0.0022 0.0022
P-value 0.4293 0.6809 0.5414
no heterosced. 0.0772 0.0765 0.0769 0.0000 0.0000 0.0000
heterosc. in u 0.0602 0.0592 0.0597 0.0000 0.0000 0.0000
heterosc. in v 0.0748 0.0755 0.0752 0.0000 0.0000 0.0000
P-value 0.0000 0.0000 0.0000
v norm. distr. 0.0681 0.0674 0.0677 0.0000 0.0000 0.0000
v t-distributed 0.0734 0.0735 0.0734 0.7318 0.7318 0.7318
P-value 0.0000 0.0000 0.0000
u & v the same 0.0303 0.0299 0.0301 0.0000 0.0000 0.0000
u & v different 0.1113 0.1110 0.1111 0.0019 0.0019 0.0019
P-value 0.0000 0.0000 0.0000
σ2

u = 0.05 0.0366 0.0367 0.0366 0.0973 0.0973 0.0973
σ2

u = 0.8 0.1049 0.1041 0.1045 0.0000 0.0000 0.0000
P-value 0.0000 0.0000 0.0000
nObs = 25 0.1328 0.1315 0.1322 0.0000 0.0000 0.0000
nObs = 100 0.0419 0.0419 0.0419 0.2453 0.2453 0.2453
nObs = 200 0.0375 0.0378 0.0377 0.0000 0.0000 0.0000
P-value 0.0000 0.0000 0.0000

and the bias of the estimated efficiencies, it considerably improves the estimated ranking of
the efficiencies. However, a larger variance of the inefficiency term u not only improves the
ranking efficiencies, but also the relative precision of the estimated inefficiencies, measured
by dividing the median absolute deviation, the mean absolute deviation and the bias by the
average inefficiency in each replication.

Finally, the number of observations clearly has a significant influence on the precision
of the efficiency estimates, whereas 25 observations are apparently insufficient to obtain
reasonably precise efficiency estimates.

While the average precision of the efficiency estimates clearly depends on the proper-
ties of the DGP, it is only marginally affected by the choice between the OD and the SR.
Furthermore, the OD and the SR react in the same way to the modifications of the DGP.
Although the average differences in the performance measures between OD and SR are
statistically significant for several scenarios, they are so small—mostly 0.0005 or smaller—
that the economic implications are negligible. We do not find that one of the approaches is
clearly superior to the other with respect to the median absolute deviation and the bias, but
our results indicate that efficiency rankings returned by OD are slightly more reliable than
efficiency rankings returned by SR for practically all scenarios. Furthermore, it seems that
the OD is slightly more robust regarding misspecifications in the two-sided error term v.

However, our results do not contradict previous empirical studies that found consider-
able differences in the efficiency estimates between the OD and SR (e.g. Whiteman 1999;
Fousekis 2002; Zhang and Garvey 2008), because our results reported above only indicate
that on average the precision of the efficiency estimates does not differ to a noteworthy ex-
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Table 4 Rank correlation coefficients

mean values P values
OD SR am OD-SR OD-am SR-am

all scenarios 0.5777 0.5772 0.5791 0.0000 0.0000 0.0000
OD 0.5751 0.5743 0.5763 0.0000 0.0000 0.0000
SR 0.5802 0.5800 0.5819 0.0473 0.0000 0.0000
P-value 0.0000 0.0000 0.0000
CRS 0.5777 0.5772 0.5791 0.0000 0.0000 0.0000
IRS 0.5776 0.5772 0.5791 0.0000 0.0000 0.0000
P-value 0.9209 0.9601 0.9534
IOS 0.5776 0.5772 0.5791 0.0004 0.0000 0.0000
non-IOS 0.5777 0.5771 0.5791 0.0000 0.0000 0.0000
P-value 0.7451 0.7938 0.8836
no heterosced. 0.5951 0.5950 0.5966 0.2240 0.0000 0.0000
heterosc. in u 0.5755 0.5753 0.5775 0.1496 0.0000 0.0000
heterosc. in v 0.5623 0.5613 0.5633 0.0000 0.0000 0.0000
P-value 0.0000 0.0000 0.0000
v norm. distr. 0.5843 0.5843 0.5860 0.6236 0.0000 0.0000
v t-distributed 0.5710 0.5700 0.5722 0.0000 0.0000 0.0000
P-value 0.0000 0.0000 0.0000
u & v the same 0.5946 0.5946 0.5961 0.8729 0.0000 0.0000
u & v different 0.5607 0.5598 0.5621 0.0000 0.0000 0.0000
P-value 0.0000 0.0000 0.0000
σ2

u = 0.05 0.3999 0.4001 0.4007 0.0184 0.0000 0.0000
σ2

u = 0.8 0.7554 0.7543 0.7575 0.0000 0.0000 0.0000
P-value 0.0000 0.0000 0.0000
nObs = 25 0.4840 0.4822 0.4870 0.0000 0.0000 0.0000
nObs = 100 0.6140 0.6139 0.6148 0.0249 0.0000 0.0000
nObs = 200 0.6349 0.6355 0.6354 0.0000 0.0000 0.0429
P-value 0.0000 0.0000 0.0000

tent between the OD and the SR. This is illustrated for a typical scenario in Figure 1. In some
replications of our Monte Carlo simulation, the precision of the OD and the SR is similar
(circles close to the horizontal line at MAD OD - MAD SR = 0), but the efficiency estimates
considerably differ between the OD and the SR (MAD OD SR� 0). In other replications,
the OD clearly outperforms the SR (MAD OD - MAD SR < 0), while in further replications
it is the other way round (MAD OD - MAD SR > 0) so that the average performance is the
same for the OD and the SR (mean of MAD OD - MAD SR = 0). The average differences
of the efficiency estimates between the OD and the SR (measured in terms of the median
absolute deviation, and the rank correlation between the efficiency estimates of the OD and
the SR) are particularly significant when v is affected by either heteroscedasticity or non-
normal distribution, in which case OD performs slightly better than SR. For an empirical
production analyst who only has a single data set, it would therefore be desirable to know
whether the OD or the SR specification is more suitable for his or her specific application.
We investigated three potential criteria for choosing between the OD and the SR specifica-
tion: (i) the spread of the ratio between the output quantities (measured as the variance of
the logarithmic ratio of the output quantities), (ii) the log-likelihood values obtained by the
estimations of the OD and the SR specification, and (iii) the test statistic from a (generalised)
Regression Equation Specification Error Test (RESET) with squared and cubic fitted values
as suggested by Ramsey (1969) applied to the OD and the SR specifications. Unfortunately,
none of these three criteria indicated whether the OD or the SR performs better when the
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true efficiencies are unknown.4 However, an empirical production analyst could estimate
both the OD and the SR and take the average efficiencies from both approaches. According
to MADs and rank correlation coefficients,5 these average efficiencies outperform both the
OD and the SR approach in virtually all scenarios.
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Fig. 1 Relationship between the difference of the MAD of the OD and the MAD of the SR (MAD OD -
MAD SR) and the MAD between the OD and the SR (MAD OD SR) for the scenario, where the DGP is
an OD with CRS and IOS, no heteroscedasticity, the same u and v for both outputs, normally distributed v,
σ2

u = 0.8, and 100 observations

However, in the presence of zero output quantities, the OD and the SR do not gener-
ally perform equally well. As the OD specification cannot model zero output quantities, we
estimated the OD only with the observations that have strictly positive output quantities.
Additionally, we estimated the OD specification with a data set, where all zero values in
the output quantities were replaced by a small positive number, in our case 0.01 (specifi-
cation “ODz”). Although this approach has no theoretical foundation and the choice of the
replacement value is arbitrary (see e.g. N’Guessan et al 2006), it is still frequently used to
deal with zero values in Translog functions. Tables 5, 6, and 7 report the results for the me-
dian absolute deviations, the average biases, and the Spearman rank correlation coefficients,
respectively. Taking into account the fact that the OD can only estimate efficiencies of obser-
vations that have strictly positive output quantities, the comparisons between OD and ODz
as well as between OD and SR are only based on efficiencies of observations with strictly

4 For instance, in each replication, choosing the specification that gives the larger log-likelihood value or
the lower χ2 value of Ramsey’s (1969) RESET does not result in performance measures that are significantly
better than always taking the OD specification or always taking the SR specification.

5 The average bias of the average efficiencies from both approaches, i.e. nObs−1
∑i((êOD

i + êSR
i )/2−

ei), is equal to the mean of the two average biases of the two approaches, i.e. (nObs−1
∑i(êOD

i − ei)

+nObs−1
∑i(êSR

i − ei))/2, and thus, cannot simultaneously outperform both approaches.
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positive output quantities. The efficiencies of all observations are used to compare the ODz
to the SR.

The MAD of the OD and the ODz significantly increase in tact with the share of zeros
in the output values. This stands in stark contrast to the SR which is virtually unaffected
by the share of zeros. However, although both OD and ODz are significantly less robust
in the presence of zero values, with the ODz having a slight advantage over the OD, in
absolute terms, the differences are again rather small. We find comparable results for the
influence of the share of zeros on the bias. While the SR is unaffected by the share of zero
values, the bias of the OD significantly increases and—surprisingly—the bias of the ODz
significantly decreases with the share of zeros. All three specifications show a tendency
to overestimate the true inefficiency, especially when the sample size is small. However,
on closer examination, for some scenarios the positive bias of the ODz turns to a distinct
negative bias, i.e. a tendency to underestimate the true efficiency. Furthermore, while the
positive bias of the SR decreases with increasing sample size, the ODz clearly overshoots
the mark for larger samples.

Surprisingly, the rank correlation of the inefficiencies for all three specifications is sig-
nificantly affected by the presence of zero values. However, while the ODz and the SR seem
to perform equally ”badly”, the deviation is not of the same magnitude as in the case of the
OD, as is exemplified in figure 2.

5 10 15 20 25

0.
15

0.
20

0.
25

0.
30

Rank DGP

W
A

IR
D

IP

Fig. 2 WAIRDIP for the scenario, where the DGP is an SR with 30% of zeros in the output values, normally
distributed v, σ2

u = 0.8, and 25 observations; OD (—), ODz(· · · ), SR (- - -)

The performance of the simple solution used in ODz shows that—despite the differences
between ODz and SR being small in absolute terms—our results indicate that the SR should
be the first choice for empirical applications with zero output quantities. Table 8 presents the
performance of the ODz with three different replacement values (0.0001, 0.01, 1) as well
as the performance of the SR based on average values over all scenarios. Although choos-
ing different replacement values produces significantly different efficiency estimates (which
supports the findings of N’Guessan et al 2006), the essence of the outcome is unaltered as
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Table 8 Different replacement values for zero output quantities

mad bias rc
mean value: SR 0.1115 0.0412 0.6165
mean value: ODz (0.0001) 0.1158 0.0361 0.6050
mean value: ODz (0.01) 0.1154 0.0370 0.6073
mean value: ODz (1) 0.1145 0.0400 0.6107
P-value: SR - ODz (0.0001) 0.0000 0.0000 0.0000
P-value: SR - ODz (0.01) 0.0000 0.0000 0.0000
P-value: SR - ODz (1) 0.0000 0.0848 0.0000
P-value: ODz (0.0001) - ODz (0.01) 0.0378 0.0013 0.0000
P-value: ODz (0.0001) - ODz (1) 0.0002 0.0000 0.0000
P-value: ODz (0.01) - ODz (1) 0.0029 0.0000 0.0000

the SR in all cases performs as least as well as the ODz. In our simulation study, replacing
zero output quantities by ones resulted on average in a significantly higher rank correlation
than replacing zero output quantities by 0.01 or 0.0001. However, this result should not be
generalised, because it depends on the units of measurement of the output variables and it is
likely specific for the data generating process that we chose for our simulation study.

5 Conclusion

We compared the standard Translog output distance (OD) function (Kumbhakar and Lovell
2000) with the Translog stochastic ray (SR) production frontier (Löthgren 2000) by means
of a Monte Carlo simulation, exposing both specifications to common data problems. The
results indicate that if a considerable share of output quantities is zero, the SR clearly out-
performs the OD with observations with zero output quantities omitted and the OD with
zero values replaced by a small positive number (ODz). However, in the case of strictly pos-
itive output quantities, on average both specifications perform rather equally robustly; the
OD produces marginally more reliable efficiency rankings and seems to be slightly more ca-
pable of handling misspecifications in the two-sided error term v. Nevertheless, our results
are in line with earlier empirical findings that show considerable differences between the
inefficiency estimates of the OD and the SR at individual estimations. We investigated three
potential criteria for choosing between the OD and the SR specification in specific empirical
applications (spread of the ratio between the output quantities, log-likelihood values of the
estimations of the OD and the SR models, test statistics from Ramsey’s 1969 RESET test),
but unfortunately, none of these criteria indicated whether the OD or the SR performs better
when the true efficiencies are unknown. A first step could be to take the average efficiencies
obtained by OD and SR, which generally outperforms both the OD and the SR. However,
future research should focus on finding data-based criteria that indicate whether the OD or
SR approach is more appropriate for a given data set.
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