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In general, one can distinguish two different path-
ways for how social networks influence individual
behavior and social outcomes: the impact of net-
works on cooperation and the impact of networks
on beliefs (Jackson 2008). Regarding the first, eco-
nomic and social exchange is often plagued by op-
portunistic behavior. Ensuring honest compliance
with an explicit or implicit contract requires in-
stitutions to detect and punish cheating. In mod-
ern and developed economies, a well-functioning
state legal system performs these functions. How-
ever, even within a well-functioning legal system,
opportunistic behavior generally still occurs. Thus,
self-governance has been studied as a form of
governance, which complements rule-based sys-
tems (Dixit 2003). Self-governance corresponds to
relation-based governance, i.e. the fact that cooper-
ation is sustained via specific structures of interac-
tions among actors.

Self-governance among a group of actors with
repeated exchange among different partners can
work if communication within the group permits
a collective memory of cheating and group mem-
bers punish cheaters by refusing to trade with them.
Kandori (1992) developed a pioneering theoretical
approach, which was elaborated on by Greif (1994)
and more recently by Dixit (2003). Moreover, in
sociology, a well-established literature on social
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exchange and networks exists (Cook and Emer-
son 1978; Raub and Weesie 1990; Buskens 2003).
However, despite these seminal contributions, it is
fair to conclude that research on networks and co-
operation is still in its infancy. In particular, exist-
ing economic studies focus on rather abstract mod-
els of relation-based self-governance. These mod-
els do not permit derivation of explicit hypothe-
ses regarding how specific network structures im-
pact cooperation (Dixit 2003; Greif 1994). More-
over, existing studies mostly analyze the impact of
network structure on cooperation or defection as a
binary variable, while the degree of cooperation,
or the costs of achieving cooperation, have hardly
been studied as yet.

In this context, this article sets out (1) to develop
a simple game-theoretical model in which transac-
tion costs are derived from the risk of opportunis-
tic behavior in repeated multilateral trade relations,
(2) to demonstrate that individual transaction costs
are determined by the structure of an agent’s ego-
centric (personal) business network, and (3) to es-
timate empirically the impact of business network
structures on farms’ transaction costs observed for
different input and output markets. Estimation re-
sults based on a sample of Polish farms imply a
significant influence of social network structures on
farms’ transaction costs.

Theory

A simple trading world

Consider a simple trading world comprising two
buyers and three sellers located in two regions. Let
b = 1,2 denote the buyers, while s = 3,4,5 denote
the sellers.

Sellers and buyers are matched and can ex-
change two commodities, A and B. For a given
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exchange rate v, sellers are willing to exchange a
specific quantity t of commodity A in return for a
quantity v · t of commodity B. Sellers are defined as
the agents who move first, while buyers, by defini-
tion, always respond. Thus, exchange is considered
as a one-sided prisoner’s dilemma game (OSPD),
where only buyers can display opportunistic be-
havior. Let Πs(t,v) = v · t −C(t) and Πb(t,v) =
(1− v)t ∀ t ≤ t̂b, Πb(t,v) = 0 ∀ t > t̂b denote the
payoff functions of sellers and buyers, respectively.
C(.) is a convex function, which reflects increas-
ing marginal costs of production for commodity A.
Quantity t̂b is understood as buyer b’s maximum
trading capacity.

Matches

The game is played in two periods. In the first pe-
riod, buyers can decide whether they want to be-
have honestly or cheat. The appropriate reward or
punishment for their behavior occurs in the second
period, which is, as usual, interpreted as the re-
duced form of a longer future (Dixit 2003, p. 1296).
In each period, both buyers are randomly matched
with sellers, where mbs denotes the probability that
buyer b is matched with seller s. The matches are
assumed to have the following properties:

MI1. Independence: In each period, matches of
buyer 1 and 2 are independent of each other. Fur-
ther, the actual match in period 1 does not affect the
probabilities of matches in period 2—an assump-
tion to make the analysis more tractable. In reality,
buyers and sellers may build reputation and pre-
serve matches that have had good outcomes. But as
long as there is some exogenous probability of sep-
aration due to death or retirement of trading part-
ners, qualitative results will be unaffected by this
assumption (see also Dixit 2003).

MI2. Matching technology: In each period,
each buyer b meets exactly one seller s. Hence
∑
s

mbs = 1, b ∈ (1,2). However, a seller can meet

one, two or no buyer, i.e. ∑
b

mbs ≤ 1 ∀ s. The lat-

ter assumption implies that trading involves search
costs for sellers, which can differ among sellers.

MI3. Spread of information: If a buyer in a
match cheats the seller, the seller can inform other
sellers. We denote the probability that information
sent by seller s is received by seller s′ by iss′ . Infor-
mation transmission is symmetric: iss′ = is′s. Obvi-
ously iss = 1.

Player types, information, strategies, and
payoffs

Following Dixit (2003) there are two behavioral
types of buyers: normal buyers (N-type) and
Machiavellian buyers (M-type). The M-type buyers
should be thought of as especially skillful cheaters.
In period 1 types are unknown, where nature in-
dependently draws the type of each buyer, with ε

being the probability that a buyer is of type M. The
probability ε is assumed to be very small. In each
period, four different matching scenarios are possi-
ble for each seller. We denote these by g= 0,1,2,3:
no match (g = 0), meeting buyer 1 (g = 1), meeting
buyer 2 (g = 2), or meeting both buyers (g = 3).
With given matching probabilities, it is straight-
forward to calculate the probability that a specific
matching scenario occurs for each seller. We denote
these probabilities by Wsg.

If a seller is matched with a buyer he may
know the buyer’s history of cheating, if any, given
the information mechanism described under MI3.
For each matching scenario g, the stage game of
matched sellers and buyers is as follows:

G1. Matched players simultaneously choose
whether to play or not. The payoff of the outside
opportunity for each player is normalized to zero.

G2. If a seller and a buyer choose to play, they
play the following one-sided prisoner’s dilemma
game (OSPDg).

Seller s formulates an exchange proposal
(tbs,vbs), 0≤ tbs ≤ t̂b and vbs ∈ (vc,v). Buyer b can
agree with this proposal, or reject. If b rejects, the
game is over and both players receive their outside
payoff of zero. If b agrees, then seller s delivers tbs
units of commodity A to the buyer. After receiv-
ing tbs, the buyer can choose to be honest, i.e. re-
turn v · tbs units of commodity B to the seller, or the
buyer can cheat and only return vc · tbs units, with
0 < vc < v. Hence, we assume that trading does
not occur in a completely lawless environment, i.e.
there is a limit to cheating, with a minimum degree
of contract fulfillment being guaranteed by the state
legal system at least for N-type buyers.

If b is honest, he receives payoff Πb(tbs,vbs)
which is always lower than, or equal to, his pay-
off from cheating Πb(tbs,vc). Seller s’s payoff de-
pends on the matching scenario g. If a seller meets
only one buyer, his payoff is Πs(tbs,vbs) if the buyer
is honest and Πs(tbs,vc) if the buyer cheats. How-
ever, if seller s meets both buyers his possible pay-
offs from the game played with buyer b are con-
ditional on his trade proposal made to the other
buyer t−bs, i.e. ∑

b
tbsvbs−C(tbs + t−bs) if b is hon-

est and tbsvc + t−bsv−bs−C(tbs + t−bs) if b cheats,
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respectively. Thus, under scenario g = 3, a seller
simultaneously plays two OSPD games, one with
each of the two buyers. To formulate some fur-
ther restrictions regarding the payoff functions of
players, we define to

s = argmaxΠs(t,v) and tc
s =

argmaxΠs(t,vc) < to
s as seller s’s maximum trad-

ing volumes given prices v and vc, respectively.
If a buyer meets an M-type player, the latter al-

ways cheats. In particular, we assume that even
if a seller proposes the state guaranteed exchange
rate vc, M-type buyers still have sufficient cheat-
ing skills to reduce this price, while N-types pay
vc. We thus assume that seller s will always make a
loss, L > 0, when playing against an M-type buyer.
Therefore, knowing that b is an M-type buyer im-
plies that s will choose not to play. If s proposes
the higher exchange rate v, cheating of any buyer
will always imply the price vc, independently of the
buyer’s type.

We make two further assumptions:
P1. It holds for any seller that (1−ε)Πs(tc

s ,vc)−
εL > 0, which implies that every seller prefers to
play when matched with a random buyer, where in
period 2 sellers will always propose the minimal
trading contract (tc

s ,vc) to any unknown buyer they
meet under matching scenarios 1 and 2, while they
will propose (0.5tc

s ,vc) to each single buyer under
matching scenario 3.

P2. It holds for any buyer that Πb(t̂b,vc) −
Πb(t̂b,v) < chs

b ∀s, where, as defined below, chs
b is

the expected payoff of an N-type player in period 2
who played honestly with seller s in period 1. P2
says that in a world where cheating is detected with
certainty, no N-type buyer will choose to cheat.
Thus, N-type buyers will only be tempted to cheat
if there is a positive probability that cheating in pe-
riod 1 will not be detected by future trading part-
ners.

Equilibrium

Instead of a full derivation of equilibrium strate-
gies, we focus on characterizing the equilibrium
behavior of sellers and buyers, where a formal
proof is available from the authors. The general so-
lution concept is an imperfect Bayesian Nash equi-
librium. By assumption, M-type players always
choose to play, and if they play, they always cheat.
Thus, the relevant strategies to be characterized are
those of the sellers and N-type buyers.

The crucial point is that in equilibrium, N-
type buyers will only play honestly in period 1 if
their total expected payoff from playing honestly
is higher than the payoff received from cheating.
Given a trading proposal (tbs,v), cheating results in

a profit gain of tbs(v−vc) in period 1, while the cost
of cheating results from the fact that in period 2
future trading partners might be informed about a
buyer’s cheating and refuse to play. Let chs

b and ccs
b

denote the expected payoffs of buyer b in period 2
if he played honestly with seller s and if he cheated
in period 1, respectively. Thus, the cost of cheating
equals chs

b − ccs
b . It holds: chs

b = ∑
s′

mbs′cbs′ , where

cbs′ = tc
s′(1 − vc) [1−0.5m−bs′(1−m−bs′ε)]. Ac-

cordingly, it holds ccs
b = ∑

s′
mbs′ (1− iss′)cbs′ . Over-

all, buyers play honestly as long as the gains from
cheating are lower or equal to the costs of cheating,
i.e. tbs(v− vc)≤ chs

b − ccs
b .

Hence, for each seller and each buyer, a max-
imum trading volume, t̄bs = Qbs/(v− vc), exists
that guarantees honesty in equilibrium and is de-
termined by the given matching and information
technology MI1–MI3, where Qbs = chs

b − ccs
b =

∑
s′

mbs′ iss′cbs′ are the costs of cheating. Accordingly,

given this equilibrium strategy of N-type buyers,
a seller s’s Bayesian updating on the information
that a currently matched buyer cheated in period 1
results in the belief that this buyer is an M-type
player. Therefore, choosing not to play with this
buyer in period 2 is optimal.

Overall, in equilibrium, each seller has a trad-
ing strategy in period 1, t∗sg = (t∗bsg),v

∗
sg = (v∗bsg),

for each matching scenario g = 0,1,2,3 which
maximizes his expected profit. Assuming Qbs is
sufficiently large so that sellers always cooperate
in the first period1, equilibrium strategy can be
characterized as follows:2 t∗1sg = 0,g = 0,2; t∗1sg =

min{t̄1s, t̂1, to
s } ,g = 1,3; t∗2sg = 0,g = 0,1; t∗2sg =

min
{

t̄2s, t̂2, to
s − t∗1sg

}
,g = 2,3.

Transaction costs and networks

Obviously, as long as ∑
b

t∗bsg < to
s , trading will be re-

stricted from the view point of a seller, where trade
restrictions are caused by a commitment problem
of matched buyers to play honestly (t̄bs < to

s ), or
due to search costs. In our simple trading game,
commitment power of a buyer b vis-à-vis a seller s
is exactly captured by the term Qbs, while search
costs result from the fact that a seller is not matched

1 If Qbs is below a specific threshold, sellers will cease to
cooperate, i.e. make a non-cooperative trading proposal, (tc

s ,vc)
even in period 1.

2 Please note that under scenario 3 there might be multiple
trading proposals (tbs) that maximize seller s’s payoff. For sim-
plicity, guaranteeing a unique solution, we assume that sellers
always suggest a maximum trading quantity to buyer 1 without
changing main implications of our analyses.
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with a buyer, or is matched with a buyer who has
limited trading capacities (t̂b < to

s ).
In reality, firms often have to make production

decisions before actually knowing which trading
deals they can make. In this case, sellers have to
make their production decision under uncertainty,
i.e. they do not know which trading scenario g =
0,1,2,3 will be realized. Assuming that non-sold
quantities of commodity A have value v0

s to the
seller, his expected profit maximization with ex
ante uncertainty of trading scenarios can be stated
as follows:

t∗s = argmax
t

Π
s(t)−TCs(t)(1)

TCs(t) = ∑
g

Wsg

[
It>t̂sg(v− v0

s )(t− t̂sg)

+ ε · t̂sg(v− vc)
]
,

where t∗s denotes seller s’s optimal production de-
cision, t̂sg = ∑

b
t∗bsg are the equilibrium trading vol-

umes resulting from our simple trading game, and
It>t̂sg is an indicator function that is one if t > t̂sg

and zero otherwise. Obviously, TCs(t) can be in-
terpreted as seller s’s transaction costs of using the
trading regime (MI1–MI3) reflecting inherent com-
mitment and search problems. Further, TCs(t) is
increasing stepwise in t, where the discontinuous
jumps of the transaction costs occur at the equi-
librium trade volumes of each trading scenario g
(t = t̂sg). Accordingly, the concrete specification of
seller s’s transaction cost function depends on the
matching and information mechanism MI1–MI3.

How can we relate transaction costs of relation-
based trading regimes with actual network struc-
tures of underlying interactions? In more specific
terms, how can we relate a firm’s personal, so-
called ego-centric, network structures to its indi-
vidual transaction costs, which result from commit-
ment problems of trading partners?

To understand this relation intuitively, please
note that both the matching and the information
mechanisms are defined by a network of dyadic
trading and information exchange relations among
the set of traders. Accordingly, an ego-centric net-
work of an individual trader i (EGO) is defined as
the subset of all dyadic relations among traders in
the neighborhood of EGO, where the latter is de-
fined as the subset of all traders which have a di-
rect trading or information exchange relation with
trader EGO.

Assume business occurs in separated small local
trading worlds. In this case, it follows that small
and dense ego-centric business networks increase

commitment power of firms and hence reduce c.p.
their transaction costs. To see this, consider a small
local trading world comprising only one buyer and
three sellers, where a seller s has a strong and di-
rect information link to the two other sellers, i.e.
iss′ is close to 1, while all sellers have a strong trad-
ing link with the buyer b, say ms′b = 0.33 for all
s′. Hence, the ego-centric business network of s is
small with a size of 3 and dense, with a density of
2/3 = 0.67. Moreover, it follows that Qbs almost
equals chs

b , that is cheating is detected with almost
certainty and thus seller s has almost full commit-
ment power vis-à-vis buyer b.

In a large global trading world, however, a seller
meets many different buyers with a low matching
frequency for a specific buyer. Hence, in a large
trading world, a seller would need to form a large
number of information ties to be able to commit all
matched buyers. But, network ties are costly and
hence the number of ties per firm is restricted. Ac-
cordingly, in a global trading world, a seller can
only reach a large set of other trading partners via
indirect information ties. It is well known in quan-
titative network theory (Rapoport 1953) that the
probability that information spreads from any node
i to any other node j in a large network is deter-
mined by global network structures, i.e. the global
network density and the global clustering of the
network. Analogously, at the micro level, the prob-
ability that information sent by EGO will reach an
average node in the network increases with size and
decreases with density of the EGO’s network (Hen-
ning and Saggau 2010).

Thus, in a global trading world, large and sparse
ego-centric business networks imply higher values
of Qbs, which increase the commitment power of
firms and lower their transaction costs. Compared
to small local trading worlds, transaction costs are
ceteris paribus higher, as information transmission
is less efficient in large, as opposed to small net-
works. Moreover, please note that as long as busi-
ness occurs in separated small trading worlds, large
and sparse networks, including traders of different
local trading worlds, are quite inefficient at com-
mitting to a specific local trader.

Empirical Framework
Overall, our theory implies that relation-based self-
governance of trading involves commitment prob-
lems implying firm-specific non-linear transaction
costs. Moreover, the density and size of a firm’s
ego-centric business network should have a signif-
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icant impact on the firm’s absolute and marginal
transaction costs.

To test our theory empirically, we undertake an
econometric estimation of the impact of social net-
works on transaction costs in commodity markets.
Our starting point is the following Lagrangian for
maximizing a farm’s risk-adjusted profit including
transaction cost:

Λ =
N

∑
i=1

[
piyi−T y

i (yi)−Ry
i

]
(2)

−
K

∑
k=1

[wkxk +T x
k (xk)]

−λF(y,x)

where y = (y1, . . . ,yN)
′ is a vector of N output

quantities, x = (x1, . . . ,xK)
′ is a vector of K input

quantities, pi is the price of the ith output, wk is
the price of the kth input, T y

i are transaction costs
for selling the ith output, T x

k are transaction costs
for purchasing the kth input, Ry

i is a risk premium
due to price volatility of the ith output, λ is a La-
grangian multiplier, and F(y,x) denotes the trans-
formation function with F(y,x) = 0 if the output
quantities y can be produced from the input quan-
tities x. The first-order conditions are

∂Λ

∂yi
= pi− τ

y
i − ry

i −λFy
i = 0 ∀ i;(3)

∂Λ

∂xk
=−wk− τ

x
k −λFx

k = 0 ∀ k(4)

with τ
y
i = ∂T y

i /∂yi being marginal transaction
costs for selling the ith output, ry

i = ∂Ry
i /∂yi are

marginal risk premiums due to price volatility of
the ith output, Fy

i = ∂F(.)/∂yi are partial deriva-
tives of the transformation function with respect to
the ith output, τx

k = ∂T x
k /∂xk are marginal trans-

action costs for selling the kth input, and Fx
k =

∂F(.)/∂xk are partial derivatives of the transforma-
tion function with respect to the kth input. Some
calculus leads to

Fy
i

Fy
1
=

pi

p1

1−
τ

y
i

pi
−

ry
i

pi

1−
τ

y
1

p1
−

ry
1

p1

∀ i≥ 2;(5)

−
Fxk

Fy1

=
wk

p1

1+
τx

k
wk

1−
τ

y
1

p1
−

ry
1

p1

∀ k.(6)

Given a specified farm technology, F(y,x), the
transaction costs function can be estimated econo-
metrically based on firms’ observed inputs and

outputs, observed farm-specific input and output
prices, as well as further farm characteristics.

Econometric models

In the first step we estimate F(y,x) as a flexi-
ble translog multiple-output stochastic Ray produc-
tion frontier, as suggested by Löthgren (2000). The
key idea of this approach is to represent the vec-
tor of output quantities y by a distance component
l(y) = ‖y‖ (its Euclidean norm) and a direction
measure m(θθθ(y)), i.e. the polar coordinates with
‖m(θθθ(y))‖= 1.

In the second step, we estimate transaction cost
parameters based on eq. (5) and (6). Taking the
logarithm and replacing the logarithmic terms on
the right-hand side by first-order Taylor series ap-
proximations yields after re-arrangements (Hen-
ning, Henningsen, and Henningsen 2010):

ln
(

Fy
i

Fy
1

)
− ln

(
pi

p1

)
(7)

=−
τ

y
i

pi
−

ry
i

pi
+

τ
y
1

p1
+

ry
1

p1
∀ i≥ 2

ln
(
−

Fxk

Fy1

)
− ln

(
wk

p1

)
(8)

=
τx

k
wk

+
τ

y
1

p1
+

ry
1

p1
∀ k.

Given our theoretical results, we assume that the
transaction costs T y

i and T x
k can be approximated

by the quadratic functions

T y
i = ψ

y
i +α

y
i yi +β

y
i y2

i ∀ i;(9)

T x
k = ψ

x
k +α

x
k xk +β

x
k x2

k ∀ k,(10)

where ψ
y
i , α

y
i , β

y
i , ψx

k , αx
k , and β x

k are unknown pa-
rameters.

To estimate the influence of network parameters
on transaction costs, we further parameterize the
parameters of the transaction cost functions by

α
y
i = δ

y
i +ζζζ

y
i z ∀ i; α

x
k = δ

x
k +ζζζ

x
kz ∀ k(11)

β
y
i = κ

y
i +ηηη

y
i z ∀ i; β

x
k = κ

x
k +ηηη

x
kz ∀ k,(12)

where δ
y
i , δ x

k , κ
y
i , and κx

k are unknown parameters,
ζζζ

y
i , ζζζ x

k, ηηη
y
i , and ηηηx

k are vectors of unknown param-
eters, and z denotes a vector of network structural
parameters. Finally, we assume that the risk pre-
mium due to volatility of output prices can be ap-
proximated by the functions Ry

i = µ
y
i vy

i yi, where µ
y
i

is an unknown parameter and vy
i is the price volatil-

ity of the ith output.
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Y y
i = δ

y
i

(
− 1

pi

)
+ζζζ

y
i

(
− z

pi

)
+κ

y
i

(
−2 · yi

pi

)
+ηηη

y
i

(
−2 ·z yi

pi

)
+µ

y
i

(
−

vy
i

pi

)
(13)

+δ
y
1

(
1
p1

)
+ζζζ

y
1

(
z

p1

)
+κ

y
1

(
2 · y1

p1

)
+ηηη

y
1

(
2 ·z y1

p1

)
+µ

y
1

(
vy

1
p1

)
+ ε

y
i ∀ i≥ 2

Y x
k = δ

x
k

(
1

wk

)
+ζζζ

x
k

(
z

wk

)
+κ

x
k

(
2 · xk

wk

)
+ηηη

x
k

(
2 ·z xk

wk

)
(14)

+δ
y
1

(
1
p1

)
+ζζζ

y
1

(
z

p1

)
+κ

y
1

(
2 · y1

p1

)
+ηηη

y
1

(
2 ·z y1

p1

)
+µ

y
1

(
vy

1
p1

)
+ ε

x
k ∀ k,

Given the above model specifications, we can
derive the system of structural equations as
given in eq. (13) and eq. (14), where Y y

i =

ln
(

Fy
i

Fy
1

p1

pi

)
∀ i≥ 2, Y x

k = ln
(
−

Fx
k

Fy
1

p1

wk

)
∀ k, and

ε
y
i ∀ i ≥ 2 as well as εx

k ∀ k are stochastic error
terms.

Data and estimation

For the econometric estimation of the above struc-
tural equations, we use accountancy data and data
of ego-centric networks of Polish farms collected
in an farm-household survey in 2007, conducted
by the authors (Henning, Henningsen, and Hen-
ningsen 2010). We have a sample of 315 observa-
tions entering the first step of the estimation. How-
ever, at the second step, we had to disregard be-
tween 215 and 232 observations due to missing
price data (see table 2). We distinguish two aggre-
gate outputs, aggregate crop production including
12 individual crops and aggregate livestock pro-
duction including 10 individual animal products, as
well as six inputs, labor, land, capital, intermedi-
ate inputs for crop production, intermediate inputs
for livestock production, and general intermediate
inputs. Furthermore, we include four variables in
the model as explanatory variables for the ineffi-
ciency term, education (1 = low to 4 = high), expe-
rience (measured in years worked in agriculture), a
dummy variable for mixed (non-specialized) farms,
and the farmers’ attitude to risk (1 = risk neutral to
4 = strong risk aversion). The multi-output stochas-
tic ray production frontier model was estimated en-
forcing monotonicity in inputs applying a three-
step estimation procedure proposed by Henningsen
and Henning (2009) using the R package frontier
(Coelli and Henningsen 2010). Estimated param-
eters of the unrestricted and restricted model are
provided in Henning, Henningsen, and Henningsen
(2010).

Using the parameters of the adjusted restricted
model, we compute the dependent variables for
the second step of our estimation procedure, i.e.
equations (13) and (14). In this step, we consider
transaction costs on five markets, crop products,
animal products, intermediate inputs for crop pro-
duction, intermediate inputs for animal production,
and general intermediate inputs, while we con-
sider labor, land, and capital as quasi-fixed produc-
tion factors. Following our theoretical hypothesis,
we use two network parameters, density (z1) and
size (number of business contacts, z2), calculated
from farmers’ ego-centric business networks. Fol-
lowing the state-of-the-art approach in quantitative
network theory, we use three name generators to
collect ego-centric business network data, i.e. we
asked farm managers to name up to five most im-
portant suppliers of inputs and demanders of their
outputs, as well as to name up to five most impor-
tant other firms with whom they exchange valu-
able business information (Henning, Henningsen,
and Henningsen 2010). Following the approach of
Krackhardt (Wasserman and Faust 1994), we fur-
ther ask farm managers to describe the relations be-
tween named business partners ranging from 0 = no
relation to 3 = very close relation.

We denote crop products as first output (i = 1)
so that the corresponding variables are used for the
normalization in equations (13) and (14). Hence,
we estimate a system of four equations—one equa-
tion (13) (with i = 2 for livestock products) and
three equations (14) (with k = 1 for intermediate
inputs for crop production, k = 2 for intermediate
inputs for livestock production, and k = 3 for gen-
eral intermediate inputs)—by seemingly unrelated
regressions (SUR) using the R package systemfit
(Henningsen and Hamann 2007).

Given the parameter estimates of the second
stage, we can calculate the estimated normalized
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marginal transaction costs by

τ
y
i

pi
=

δ
y
i +ζ

y
i,1 z1 +ζ

y
i,2 z2 +2κ

y
i yi

pi
(15)

+
2η

y
i,1 yi z1 +2η

y
i,2 yi z2

pi
∀ i

τx
k

wk
=

δ x
k +ζ x

k,1 z1 +ζ x
k,2 z2 +2κx

k xk

wk
(16)

+
2ηx

k,1 xk z1 +2ηx
k,2 xk z2

wk
∀ k.

To analyze estimated network effects on normal-
ized marginal transaction costs, we take the par-
tial derivatives of eqs. (15) and (16) with respect
to density (z1) and size (z2).

Results
Summary statistics and estimated transaction cost
parameters are presented in tables 1 and 2. Overall,
estimation results can be summarized in the follow-
ing points. First, as can be seen from table 3, we
find considerable marginal transaction costs rang-
ing from 32 % to 59 % of the corresponding in-
put and output prices. Second, a significant influ-
ence of network parameters on both marginal pro-
portional (ζ -parameters) and non-proportional (η-
parameters) transaction costs results. However, sin-
gle parameters are only significant at the 5%-level
for network size (z2, see t-values for parameters
ζ

y
i2,ζ

x
k2,η

y
i2,η

x
k2), but not for network density (z1,

see t-values for parameters ζ
y
i1,ζ

x
k1,η

y
i1,η

x
k1 in table

1).
Third, on average, the following pattern of the

impact of network parameters on transaction costs
can be observed from table 3. While density lowers
transaction costs on input markets and raises trans-
action costs on output markets, the opposite effect
can be observed for network size.

How can these patterns be explained? Based on
our above theoretical analysis, it follows that for
globally traded goods, transaction costs are lower
the larger and less clustered the business network
of a firm.

By contrast, for locally traded goods, firms with
dense and locally clustered business networks face
comparatively low transaction costs, since they can
better constrain their local business partners via di-
rect contacts to their local clients.

Interestingly, in our farm sample, inputs mainly
comprise fodder and seeds, which are partly self-
produced, as well as machinery services, fertilizers,
and pesticides, which are traded mostly with other

farms or small enterprises in the neighborhood.
Hence, inputs are usually traded ’locally’, while
outputs are usually sold to commercial traders op-
erating ’globally’, i.e. across communities. Thus,
the estimated patterns of network effects tend to
support our theory.

Conclusion
We see two contributions of this article to the
emerging field of networks and economics. First,
the article extends the theory by introducing trans-
action costs into existing network models of multi-
lateral exchange. Second, we submit our extended
theory to a comprehensive econometric empirical
estimation of farms’ marginal transaction costs. We
find a significant quantitative impact of ego-centric
network structures on these costs. This not only
adds to the established theory of farm behavior and
transaction costs, but also suggests future research
on how policy intervention can be designed to
change a farm’s business networks to lower trans-
action costs.
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