
Computational Statistics manuscript No.
(will be inserted by the editor)

maxLik: A Package for Maximum Likelihood
Estimation in R

Arne Henningsen · Ott Toomet

This article has been published in Computational Statistics, September 2011, Volume 26,
Issue 3, p. 443–458. The original publication is available at www.springerlink.com, DOI:
10.1007/s00180-010-0217-1, http://dx.doi.org/10.1007/s00180-010-0217-1. A few num-
bers in the R outputs slightly differ between the published version and this paper, because
the R outputs have been re-generated for this version.

Abstract This paper describes the package maxLik for the statistical envi-
ronment R. The package is essentially a unified wrapper interface to various
optimization routines, offering easy access to likelihood-specific features like
standard errors or information matrix equality (BHHH method). More ad-
vanced features of the optimization algorithms, such as forcing the value of a
particular parameter to be fixed, are also supported.
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1 Introduction

The Maximum Likelihood (ML) method is one of the most important tech-
niques in statistics and econometrics. Most statistical and econometric software
packages include ready-made routines for maximum likelihood estimations of
many standard models such as logit, probit, sample-selection, count-data, or
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Department of Economics, University of Tartu
Narva 4, Tartu 51009, Estonia
E-mail: ottt@asb.dk



2 Arne Henningsen, Ott Toomet

survival models. However, if practitioners and researchers want to estimate
non-standard models or develop new estimators, they have to implement the
routines for the maximum likelihood estimations themselves. Several popular
statistical packages include frameworks for simplifying the estimation, allow-
ing the user to easily choose between a number of optimization algorithms,
different ways of calculating variance-covariance matrices, and easy reporting
of the results. The examples include the ml command in stata and the maxlik

library for GAUSS.
The free software environment for statistical computing and graphics R

(R Development Core Team 2009) has included built-in optimization algo-
rithms since its early days. The first general-purpose ML framework, function
mle in the built-in package stats4, was added in 2003, and an extension,
mle2 in package bbmle (Bolker 2009), in 2007. However, both of these pack-
ages are based on a general-purpose optimizer optim which does not include
an option to use the Newton-Raphson algorithm. In particular, its variant,
the Berndt-Hall-Hall-Hausman algorithm (Berndt et al 1974), is very popular
for ML problems. The R package maxLik (Toomet and Henningsen 2010) is
intended to fill this gap.1 The package can be used both by end-users, devel-
oping their own statistical methods, and by package developers, implementing
ML estimators for specific models. For instance, the packages censReg (Hen-
ningsen 2010), mhurdle (Carlevaro et al 2010), mlogitBMA (Sevcikova and
Raftery 2010), pglm (Croissant 2010), sampleSelection (Toomet and Hen-
ningsen 2008), and truncreg (Croissant 2009) use the maxLik package for
their maximum likelihood estimations.

The maxLik package (currently version 1.0) is available from
CRAN (http://cran.r-project.org/package=maxLik), R-Forge (http:
//r-forge.r-project.org/projects/maxlik/), and its homepage
(http://www.maxLik.org/). This paper focuses on the maximum likelihood
related usage of the package; the other features (including finite-difference
derivatives and optimization) are only briefly mentioned.

The paper proceeds as follows: in the next section we explain the implemen-
tation of the package. Section 3 describes the usage of the package, including
the basic and more advanced features, and Section 4 concludes.

2 Implementation

The R package maxLik is designed to provide a single, unified interface for dif-
ferent optimization routines, and to treat the results in a way suitable for max-
imum likelihood (ML) estimation. The package implements a flexible multi-
purpose Newton-Raphson type optimization routine in function maxNRCom-

pute. This internal function is not intended to be called by users but function

1 The other ML-related packages offer a few capabilities that are missing in maxLik (e.g.
likelihood profiling). This may be suboptimal from the user’s perspective who might prefer
a single “ultimate” ML package. However, a number of partially overlapping projects seems
to characterize a large part of the free software world.
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maxNR provides a convenient user-interface and calls maxNRCompute for the ac-
tual optimization. This Newton-Raphson type algorithm is also used as the ba-
sis of function maxBHHH, which implements a Berndt-Hall-Hall-Hausman type
algorithm (Berndt et al 1974) that is popular for ML problems. In addition, the
Broyden-Fletcher-Goldfarb-Shanno algorithm (Broyden 1970; Fletcher 1970;
Goldfarb 1970; Shanno 1970), the Nelder-Mead routine (Nelder and Mead
1965), and a simulated annealing method (Bélisle 1992) are available in a uni-
fied way in functions maxBFGS, maxNM, and maxSANN, respectively. These three
functions are predominantly wrapper functions around the internal function
maxOptim, which calls function optim (from the built-in package stats) for the
actual optimization. The maxLik package provides a further implementation
of the BFGS optimizer, maxBFGSR, which—unlike the optim-based methods—
is written solely in R.2

The maxLik package is designed in two layers. The first (innermost) is the
optimization (maximization) layer: all the maximization routines are designed
to have a unified and intuitive interface which allows the user to switch easily
between them. All the main arguments have identical names and similar or-
der; only method-specific parameters may vary. These functions can be used
for different types of optimization tasks, both related and not related to the
likelihood. They return an S3 object of class maxim including both estimated
parameters and various diagnostics information.

The second layer is the likelihood maximization layer. The most important
tool of this layer is the function maxLik. Its main purpose is to treat the inputs
and maximization results in a ML-specific way (for instance, computing the
variance-covariance matrix based on the estimated Hessian). The maxBHHH

function belongs to this layer as well, being essentially a call for maxNR using
the information matrix equality as the way to approximate the Hessian matrix.
A new class maxLik is added to the returned maximization object for automatic
selection of the ML-related methods.

The maximization layer supports linear equality and inequality constraints.
The equality constraints are estimated using the sequential unconstrained
maximization technique (SUMT), which is also implemented in the maxLik
package. This is achieved by adding a (initially tiny) penalty term, related to
violation of the constraints, to the objective function. Thereafter the problem
is repeatedly solved while the penalty is increased for every new repetition.
The inequality constraints are delegated to constrOptim in the package stats.
The maxLik function is aware of the constraints and is able to select a suitable
optimization method; however, no attempt is made to correct the resulting
variance-covariance matrix (just a warning is printed). As the constrained op-
timization should still be considered as experimental, we refer the reader to
the documentation of the package for examples.

The maxLik package is implemented using S3 classes. Corresponding
methods can handle the likelihood-specific properties of the estimate including

2 The maxBFGSR optimizer supplies more debugging information compared to optim-based
methods. We are grateful to Yves Croissant for providing the core of this code.
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the fact that the inverse of the negative Hessian is the approximate variance-
covariance matrix of the estimated parameters. The most important methods
for objects of class "maxLik" are: summary for returning (and printing)
summary results, coef for extracting the estimated parameters, vcov for
calculating the variance covariance matrix of the estimated parameters, stdEr
for calculation standard errors of the estimates, logLik for extracting the
log-likelihood value, and AIC for calculating the Akaike information criterion.

3 Using the maxLik package

3.1 Basic usage

Like other R packages, the maxLik package must be installed and loaded
before it can be used. The following command loads the maxLik package:

> library( "maxLik" )

The most important user interface of the maxLik package is a function with
the (same) name maxLik. As explained above, maxLik is mostly a wrapper
for different optimization routines with a few additional features, useful for
ML estimations. This function has two mandatory arguments, logLik and
start. The first argument (logLik) must be a function that calculates the
log-likelihood value as a function of the parameter (usually parameter vector).
The second argument (start) must be a vector of starting values.

We demonstrate the usage of the maxLik package by a simple example: we
estimate the parameters of a normal distribution based on a random sample.
First, we generate a vector (x) of N = 100 draws from a normal distribution
with a mean of µ = 1 and a standard deviation of σ = 2:

> set.seed( 123 )

> x <- rnorm( 100, mean = 1, sd = 2 )

The logarithm of the probability density of the sample (i.e. the log-likelihood
function) is

log(L(x; µ,σ)) =−1
2

N log(2π)−N log(σ)− 1
2

N

∑
i=1

(xi−µ)2

σ2 . (1)

Given the log-likelihood function above, we create an R function that cal-
culates the log-likelihood value. Its first argument must be the vector of the
parameters to be estimated and it must return the log-likelihood value.3 The
easiest way to implement this log-likelihood function is to use the capabilities
of the function dnorm:

3 Alternatively, it could return a numeric vector where each element is the log-likelihood
value corresponding to an (independent) individual observation (see below).
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> logLikFun <- function( param ) {

+ mu <- param[ 1 ]

+ sigma <- param[ 2 ]

+ sum(dnorm(x, mean=mu, sd=sigma, log=TRUE))

+ }

For the actual estimation we set the first argument (logLik) equal to the log-
likelihood function that we have defined above (logLikFun) and we use the
parameters of a standard normal distribution (µ = 0, σ = 1) as starting values
(argument start). Assigning names to the vector of starting values is not
required but has the advantage that the returned estimates have also names,
which improves the readability of the results.4

> mle <- maxLik( logLik = logLikFun, start = c( mu = 0, sigma = 1 ) )

> summary( mle )

--------------------------------------------

Maximum Likelihood estimation

Newton-Raphson maximisation, 7 iterations

Return code 1: gradient close to zero

Log-Likelihood: -201.5839

2 free parameters

Estimates:

Estimate Std. error t value Pr(> t)

mu 1.18081 0.18159 6.5026 7.894e-11 ***

sigma 1.81648 0.12846 14.1400 < 2.2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

--------------------------------------------

For convenience, the estimated parameters can be accessed by the coef method
and standard errors by the stdEr method5:

> coef(mle)

mu sigma

1.180812 1.816481

> stdEr(mle)

mu sigma

0.1815903 0.1284640

As expected, the estimated parameters are equal to the mean and the standard
deviation (without correction for degrees of freedom) of the values in vector x.6

4 Alternatively, if all the components of the parameter vector have standardized names,
one may prefer using the command with( as.list(param), sum(dnorm(x, mean=mu,

sd=sigma, log=TRUE))) for evaluating the likelihood expression. We are grateful to a referee
for this suggestion.

5 The generic function stdEr is defined in package miscTools (Henningsen and Toomet
2010).

6 The function all.equal considers two elements as equal if either the mean abso-
lute difference or the mean relative difference is smaller than the tolerance (defaults to
.Machine$double.eps^0.5, usually around 1.5 ·10−8).
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> all.equal( coef( mle ), c( mean( x ),

+ sqrt( sum( ( x - mean( x ) )^2 ) / 100 ) ),

+ check.attributes = FALSE )

[1] TRUE

If no analytical gradient is provided by the user, finite-difference gradi-
ent and Hessian are calculated by the functions numericGradient and nu-

mericNHessian, which are also included in the maxLik package. While the
maximization of the likelihood function of this simple model works well with
finite-difference gradients and Hessians, this may not be the case for more
complex models. Finite-difference derivatives may be costly to compute, and,
even more, they may turn out to be noisy and unreliable. In this way finite-
difference derivatives might either slow down the estimation or even impede
the convergence. In these cases, the user is recommended to either provide
analytical derivatives or switch to a more robust estimation method, such as
Nelder-Mead or SANN, which is not based on gradients.

The gradients of the log-likelihood function with respect to the two param-
eters are

∂ log(L(x,µ,σ))

∂ µ
=

N

∑
i=1

(xi−µ)

σ2 (2)

∂ log(L(x,µ,σ))

∂σ
=−N

σ
+

N

∑
i=1

(xi−µ)2

σ3 . (3)

This can be calculated in R by the following function:

> logLikGrad <- function( param ) {

+ mu <- param[ 1 ]

+ sigma <- param[ 2 ]

+ N <- length( x )

+ logLikGradValues <- numeric( 2 )

+ logLikGradValues[ 1 ] <- sum( ( x - mu ) / sigma^2 )

+ logLikGradValues[ 2 ] <- - N / sigma + sum( ( x - mu )^2 / sigma^3 )

+ return( logLikGradValues )

+ }

Now we call the maxLik function and use argument grad to specify the function
that calculates the gradients:

> mleGrad <- maxLik( logLik = logLikFun, grad = logLikGrad,

+ start = c( mu = 0, sigma = 1 ) )

> all.equal( logLik( mleGrad ), logLik( mle ) )

[1] TRUE

> all.equal( coef( mleGrad ), coef( mle ) )

[1] TRUE
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> all.equal( stdEr( mleGrad ), stdEr( mle ) )

[1] "Mean relative difference: 0.0002487209"

Providing analytical gradients has no (relevant) effect on the estimates but
their standard errors are slightly different.

Instead of writing a separate gradient function, the user may prefer to
compute the gradient value in the log-likelihood function itself, because this
might be a lot faster under certain circumstances. The computed gradient value
may be added to the log-likelihood value as attribute “gradient”, analogously
to the case of function nlm of the stats package.

The analytic Hessian of the log-likelihood function can be provided by
the argument hess. If the user provides a function to calculate the gradi-
ents but does not use argument hess, the Hessians are calculated by function
numericHessian using the finite-difference approach. The elements of the Hes-
sian matrix of the log-likelihood function for the normal distribution are

∂ 2 log(L(x,µ,σ))

(∂ µ)2 =− N
σ2 (4)

∂ 2 log(L(x,µ,σ))

∂ µ ∂σ
=−2

N

∑
i=1

(xi−µ)

σ3 (5)

∂ 2 log(L(x,µ,σ))

(∂σ)2 =
N
σ2 −3

N

∑
i=1

(xi−µ)2

σ4 . (6)

They can be calculated in R using the following function:

> logLikHess <- function( param ) {

+ mu <- param[ 1 ]

+ sigma <- param[ 2 ]

+ N <- length( x )

+ logLikHessValues <- matrix( 0, nrow = 2, ncol = 2 )

+ logLikHessValues[ 1, 1 ] <- - N / sigma^2

+ logLikHessValues[ 1, 2 ] <- - 2 * sum( ( x - mu ) / sigma^3 )

+ logLikHessValues[ 2, 1 ] <- logLikHessValues[ 1, 2 ]

+ logLikHessValues[ 2, 2 ] <- N / sigma^2 - 3 * sum( ( x - mu )^2 / sigma^4 )

+ return( logLikHessValues )

+ }

Now we call the maxLik function with argument hess set to this function:

> mleHess <- maxLik( logLik = logLikFun, grad = logLikGrad,

+ hess = logLikHess, start = c( mu = 0, sigma = 1 ) )

> all.equal( list( logLik( mleHess ), coef( mleHess ), vcov( mleHess ) ),

+ list( logLik( mleGrad ), coef( mleGrad ), vcov( mleGrad ) ) )

[1] TRUE
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Providing an analytical Hessian has no (relevant) effect on the outcome of
the ML estimation in our simple example. However, as in the case of finite-
difference gradients, calculating finite-difference Hessians may turn out to be
slow and unreliable. If the user prefers to pre-compute the Hessian matrix
instead of supplying argument hess, this can be done by setting attribute
“hessian” of the object returned by the log-likelihood function to the computed
Hessian matrix.

3.2 Optimization Methods

The maxLik function allows the user to select among five optimization algo-
rithms by argument method. It defaults to "NR" for the Newton-Raphson algo-
rithm. The other options are "BHHH" for Berndt-Hall-Hall-Hausman (Berndt
et al 1974), "BFGS" for Broyden-Fletcher-Goldfarb-Shanno (Broyden 1970;
Fletcher 1970; Goldfarb 1970; Shanno 1970), "NM" for Nelder-Mead (Nelder
and Mead 1965), and "SANN" for simulated annealing (Bélisle 1992). The
Newton-Raphson algorithm uses (finite-difference or analytical) gradients and
Hessians; the BHHH and BFGS algorithms use only (finite-difference or an-
alytical) gradients; the NM and SANN algorithms use neither gradients nor
Hessians but only function values. The gradients and Hessians provided by
the user through the arguments grad and hess are always accepted. In this
way the user can easily switch the optimization method without changing the
arguments. If arguments grad or hess are provided but the selected method
does not require this information—for instance for the Nelder-Mead method—
they are ignored during the optimization. However, even if the optimization
method itself does not make use of the Hessian, this information is used for
computing the (final) variance-covariance matrix of the parameters (except for
the "BHHH" method.)7

In general, it is advisable to use all the available information, e.g. to use
the "NR" method if both analytical gradients and Hessians are available, one of
the gradient-based methods (either "BHHH" or "BFGS") if analytical gradients
but no Hessians are available, and to resort to the value-only methods only if
gradients are not provided.

3.2.1 Berndt-Hall-Hall-Hausman (BHHH)

The idea of the BHHH method is based on information matrix equality, re-
placing the Hessian by the negative of the sum over the outer products of
the gradients of individual (independent) observations (see e.g. Greene 2008,
p. 490). Note that this approximation is only valid while maximizing log-
likelihood and hence this method is usually not included in general-purpose
optimizers. In order to use the BHHH method, the user has to provide gradient
vectors by individual observations. This can be achieved either by providing

7 The user can force maxLik to use the BHHH method for computing the final Hessian for
other optimizers as well, see documentation for the argument finalHessian.
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a corresponding gradient function or attribute (see below) or by providing a
vector of individual observation-specific likelihood values by the log-likelihood
function itself (if no analytical gradients are provided). In the latter case,
finite-difference gradients are used to calculate the Hessian.

We modify our example above accordingly: instead of returning a single
summary value of log-likelihood, we return the values by individual observa-
tions by simply removing the sum operator:

> logLikFunInd <- function( param ) {

+ mu <- param[ 1 ]

+ sigma <- param[ 2 ]

+ dnorm(x, mean=mu, sd=sigma, log=TRUE)

+ }

> mleBHHH <- maxLik( logLik = logLikFunInd,

+ start = c( mu = 0, sigma = 1 ), method = "BHHH" )

> summary( mleBHHH )

--------------------------------------------

Maximum Likelihood estimation

BHHH maximisation, 13 iterations

Return code 2: successive function values within tolerance limit

Log-Likelihood: -201.5839

2 free parameters

Estimates:

Estimate Std. error t value Pr(> t)

mu 1.18081 0.18183 6.4941 8.354e-11 ***

sigma 1.81648 0.13408 13.5473 < 2.2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

--------------------------------------------

> all.equal( logLik( mleBHHH ), logLik( mle ) )

[1] TRUE

> all.equal( coef( mleBHHH ), coef( mle ) )

[1] "Mean relative difference: 2.502046e-07"

> all.equal( vcov( mleBHHH ), vcov( mle ) )

[1] "Mean relative difference: 0.07023826"

While the estimated parameters and the corresponding log-likelihood value
are virtually identical to the previous estimates, the covariance matrix of the
estimated parameters is slightly different. This is because the outer product
approximation may differ from the derivative-based Hessian in finite samples
(Calzolari and Fiorentini 1993).

If the user chooses to provide analytical gradients, the function that calcu-
lates the gradients (argument grad) must return a numeric matrix, where each
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column represents the gradient with respect to the corresponding element of
the parameter vector and each row corresponds to an individual observation.
Note that in this case, the log-likelihood function itself does not have to return
a vector of log-likelihood values by observations, as the gradient by observation
is supplied by the grad function. In the following example, we define a func-
tion that calculates the gradient matrix and we estimate the model by BHHH
method using this gradient matrix and the single summed log-likelihood from
the Newton-Raphson example.

> logLikGradInd <- function( param ) {

+ mu <- param[ 1 ]

+ sigma <- param[ 2 ]

+ logLikGradValues <- cbind( ( x - mu ) / sigma^2,

+ - 1 / sigma + ( x - mu )^2 / sigma^3 )

+ return( logLikGradValues )

+ }

> mleGradBHHH <- maxLik( logLik = logLikFun, grad = logLikGradInd,

+ start = c( mu = 0, sigma = 1 ), method = "BHHH" )

> all.equal( list( logLik( mleBHHH ), coef( mleBHHH ), vcov( mleBHHH ) ),

+ list( logLik( mleGradBHHH ), coef( mleGradBHHH ), vcov( mleGradBHHH ) ) )

[1] TRUE

Estimates based on finite-difference gradients and analytical gradients are vir-
tually identical in our simple example.

3.2.2 Nelder-Mead (NM) and other methods

The other maximization methods: Nelder-Mead, Broyden-Fletcher-Goldfarb-
Shanno, and Simulated Annealing, are implemented by a call to the the optim

function in package stats. In order to retain compatibility with the BHHH
method, all these methods accept the log-likelihood function returning a vector
of individual likelihoods (these are summed internally). A function to compute
a gradient matrix with gradients of individual observations is accepted as well.
If the user does not provide gradients, the gradients are computed by finite-
difference approach.

We give an example using the gradient-free Nelder-Mead method:

> mleNM <- maxLik( logLik = logLikFun,

+ start = c( mu = 0, sigma = 1 ), method = "NM" )

> summary( mleNM )

--------------------------------------------

Maximum Likelihood estimation

Nelder-Mead maximisation, 63 iterations

Return code 0: successful convergence

Log-Likelihood: -201.5839

2 free parameters
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Estimates:

Estimate Std. error t value Pr(> t)

mu 1.18061 0.18176 6.4954 8.282e-11 ***

sigma 1.81664 0.12843 14.1445 < 2.2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

--------------------------------------------

> logLik( mleNM ) - logLik( mleGrad )

[1] -1.361201e-06

> all.equal( coef( mleNM ), coef( mleGrad ) )

[1] "Mean relative difference: 0.0001198403"

> all.equal( vcov( mleNM ), vcov( mleGrad ) )

[1] "Mean relative difference: 0.0008824006"

The estimates and the covariance matrix obtained from the Nelder-Mead al-
gorithm slightly differ from previous results using other algorithms and the
fit (log-likelihood value) of the model is slightly worse (smaller) than for the
previous models.

Note that although the summary method reports the number of iterations
for all the methods, the meaning of “iteration” may be completely different for
different optimization techniques.

3.3 More advanced usage

The maxLik function supports a variety of other arguments, most of which
are passed to the selected optimizer. Among the most important ones
is print.level which controls the output of debugging information (0
produces no debugging output, larger numbers produce more output). Opti-
mization methods may also support various additional features, such as the
temperature-related parameters for maxSANN. Those will not be discussed here;
the interested reader is referred to the documentation of the corresponding
optimizer.

3.3.1 Fixed parameter values

Below, we demonstrate how it is possible to keep certain parameters fixed
as constants in the optimization process. This feature is implemented in all
optimization methods supported by maxLik.

Let us return to our original task of estimating the parameters of a normal
sample. However, assume we know that the true value of σ = 2. Instead of
writing a new likelihood function, we may use the existing one while specifying
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that σ is kept fixed at 2. This is done via argument fixed of maxLik.8 This
argument allows for specifying the fixed parameters in three different ways:
First, it can be a logical vector of length equal to that of the parameter vector,
which specifies which components are not allowed to change, i.e. stay fixed
at their starting values. Second, argument fixed can be an index vector that
indicates the positions of the fixed parameters. Third, this argument can be a
vector of character strings indicating the names of the fixed parameters, where
the parameter names are taken from argument start. So, as σ was the second
parameter, we may call:

> summary(maxLik(logLikFun, start=c(mu=0, sigma=2), fixed=2))

--------------------------------------------

Maximum Likelihood estimation

Newton-Raphson maximisation, 3 iterations

Return code 1: gradient close to zero

Log-Likelihood: -202.4536

1 free parameters

Estimates:

Estimate Std. error t value Pr(> t)

mu 1.18081 0.20007 5.902 3.591e-09 ***

sigma 2.00000 0.00000 NA NA

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

--------------------------------------------

As we can see, the σ is indeed exactly 2. Its standard error is set to zero while
the t-value is not defined. Note also that the estimate of µ is unchanged (in-
deed, its ML estimate is still the sample average) while the estimated standard
error is different. Obviously, the log-likelihood value is lower in the constrained
space, although the reader may verify that allowing σ to vary freely is an in-
significant improvement according to the likelihood ratio test.

3.3.2 Automatic transformation of parameters to fixed constants

Next, we demonstrate, how it is possible to turn a parameter automatically
to a fixed constant during the computations when using the maxNR optimizer.
This may be useful when estimating a large number of similar models where
parameters occasionally converge toward the boundary of the parameter space
or another problematic region. Most popular optimization algorithms do not
work well in such circumstances. In some cases, a solution is to replace the

8 In earlier version of the maxLik package (≤ 0.6), parameters could be fixed only in
functions maxNR and maxBHHH by using argument activePar. This argument was a logical
vector indicating, which parameters should not be fixed. Since version 0.7 of the maxLik
package, it is recommended to fix parameters by argument fixed, because this has several
advantages, e.g. it is easier to fix just a few out of many parameters and this works also
with the BFGS, NM, and SANN method. However, argument activePar of function maxNR

is kept for backward compatibility.
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initial model with a simpler submodel, for instance replacing a density mixture
with a single density component. Note that this problem cannot be easily
handled by constrained maximization either, as the mixture parameters are not
identified, if the weight of one component goes to zero. Below, we demonstrate
this problem by estimating the parameters of a normal mixture on a sample,
drawn from a single normal distribution. Note that this example is highly
dependent on the initialization of the random number generator and the initial
values for the estimation. This happens often with mixture models.

First, we demonstrate the outcome on a mixture of two distinct compo-
nents. We generate N = 1000 values from two different normal distributions:

> xMix <- c(rnorm(500), rnorm(500, mean=1))

Variable xMix is a 50%-50% mixture of two normal distributions: the first one
has mean equal to 0 and the second has mean 1 (for simplicity, we fix the
standard deviations to 1). The log-likelihood of a mixture is simply

l =
N

∑
i=1

log(ρφ(xi−µ1)+(1−ρ)φ(xi−µ2)), (7)

where ρ is the proportion of the first component in the mixture and φ(·) is
the density function of the standard normal distribution. We implement this
in R:

> logLikMix <- function(param) {

+ rho <- param[1]

+ if(rho < 0 || rho > 1)

+ return(NA)

+ mu1 <- param[2]

+ mu2 <- param[3]

+ ll <- log(rho*dnorm(xMix - mu1) + (1 - rho)*dnorm(xMix - mu2))

+ }

Note that the function includes checking for feasible parameter values. If ρ 6∈
[0,1], it returns NA. This signals to the optimizer that the attempted parameter
value was out of range, and forces it to find a new one (closer to the previous
value). This is a way of implementing box constraints in the log-likelihood
function. The results look like the following:

> summary(m1 <- maxLik(logLikMix, start=c(rho=0.5, mu1=0, mu2=0.01)))

--------------------------------------------

Maximum Likelihood estimation

Newton-Raphson maximisation, 10 iterations

Return code 2: successive function values within tolerance limit

Log-Likelihood: -1536.981

3 free parameters

Estimates:

Estimate Std. error t value Pr(> t)
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rho 0.27973 0.13468 2.0771 0.0378 *

mu1 1.35300 0.27001 5.0109 5.418e-07 ***

mu2 0.19521 0.12426 1.5710 0.1162

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

--------------------------------------------

The estimates replicate the true parameters within the confidence intervals;
however compared to the examples in Section 3.1, the standard errors are
rather large (note also that the sample here includes 1000 observations in-
stead of mere 100 above). This is a common outcome while estimating mixture
models.

Let us now replace the mixture by a pure normal sample

> xMix <- rnorm(1000)

and estimate it using the same log-likelihood implementation:

> summary(m2 <- maxLik(logLikMix, start=c(rho=0.5, mu1=0, mu2=0.01)))

--------------------------------------------

Maximum Likelihood estimation

Newton-Raphson maximisation, 12 iterations

Return code 1: gradient close to zero

Log-Likelihood: -1413.934

3 free parameters

Estimates:

Estimate Std. error t value Pr(> t)

rho 0.832507 Inf 0 1

mu1 0.018628 Inf 0 1

mu2 0.018628 Inf 0 1

--------------------------------------------

Although the estimates seem to be close to the correct point in the parameter
space: mixture of 100% normal with mean 0 and 0% with mean 1, the Hessian
matrix is singular and hence standard errors are infinite. This is because both
components of the mixture converge to the same value and hence ρ is not
identified. Hence we have no way establishing whether the common mean of
the sample is, in fact, significantly different from 0. If the estimation is done
by hand, it would be easy to treat ρ as fixed as in the example in Section 3.3.1.
However, this may not be a suitable approach if we want to run a large number
of similar computations on different samples. In that case the user may want
to consider signalling the maxNR routine that the parameters should be kept
fixed. We may rewrite the function for calculating the log-likelihood value as
follows:

> freePar <- rep(TRUE, 3)

> logLikMix1 <- function(param) {

+ rho <- param[1]
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+ if(rho < 0 | rho > 1)

+ return(NA)

+ mu1 <- param[2]

+ mu2 <- param[3]

+ constPar <- NULL

+ if(freePar[1] & (abs(mu1 - mu2) < 1e-3)) {

+ rho <- 1

+ constPar <- c(1, 3)

+ newVal <- c(1, 0)

+ fp <- freePar

+ fp[constPar] <- FALSE

+ assign("freePar", fp, inherits=TRUE)

+ }

+ ll <- log(rho*dnorm(xMix - mu1) + (1 - rho)*dnorm(xMix - mu2))

+ if(!is.null(constPar)) {

+ attr(ll, "constPar") <- constPar

+ attr(ll, "newVal") <- list(index=constPar, val=newVal)

+ }

+ ll

+ }

We have introduced three changes into the log-likelihood function.

– First, while changing the fixed parameters at run-time, we have to keep
track of the process. This is why we introduce freePar outside the function
itself, as it has to retain its value over successive calls to the function.

– The next novelty is related to checking the proximity to the region of trou-
ble: if(freePar[1] & (abs(mu1 - mu2) < 1e-3)). Hence, if we have not
set the first parameter (ρ) to a constant yet (this is what freePar[1]

keeps track of), and the estimated means of the components are close to
each other, we set ρ to 1. This means we assume the mixture contains only
component 1. Note that because µ2 is undefined as ρ = 1, we also have to
keep that parameter fixed. We mark both of these parameters in the pa-
rameter vector to as fixed (constPar <- c(1, 3)), and provide the new
values for them (newVal <- c(1, 0)).

– As the last step, we inform the maxNR algorithm of our decision by setting
respective attributes to log-likelihood. Two attributes are used: constPar
informs the algorithm that corresponding parameters in the parameter vec-
tor must be treated as constants from now on; and newVal (which contains
two components – indices and values) informs which parameters have new
values. It is possible to set parameters to constants without changing the
values by setting the constPar attribute only.

Now the estimation results look like:

> summary(m <- maxLik(logLikMix1, start=c(rho=0.5, mu1=0, mu2=0.01)))

--------------------------------------------

Maximum Likelihood estimation
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Newton-Raphson maximisation, 11 iterations

Return code 1: gradient close to zero

Log-Likelihood: -1413.934

1 free parameters

Estimates:

Estimate Std. error t value Pr(> t)

rho 1.000000 0.000000 NA NA

mu1 0.018628 0.031623 0.5891 0.5558

mu2 0.000000 0.000000 NA NA

--------------------------------------------

With parameters rho and mu2 treated as constants, the resulting one-
component model has small standard errors.

4 Summary and Outlook

The maxLik package fills an existing gap in the R statistical environment
and provides a convenient interface for maximum likelihood estimations —
both for end users and package developers. Although R has included general-
purpose optimizers and more specific Maximum Likelihood tools for a long
time, the maxLik package has three important features that are not available
in at least some of the alternatives: First, the package provides the Berndt-
Hall-Hall-Hausman (BHHH) algorithm, a popular optimization method which
is available only for likelihood-type problems. Second, the covariance matrix
of the estimates can be calculated automatically. Third, the user can easily
switch between different optimization algorithms.

In the future, we plan to add support for further optimization algorithms,
e.g. function nlm of the built-in stats package that uses a Newton-type al-
gorithm, the “L-BFGS-B” algorithm in function optim that allows for box
constraints, function nlminb of the stats package that uses PORT routines
(Gay 1990) and also allows for box constraints, function ucminf of the ucminf
package (Nielsen and Mortensen 2009) that uses an improved quasi-Newton
type algorithm, and function DEoptim of the DEoptim package (Ardia and
Mullen 2010) that performs evolutionary global optimization via the differen-
tial evolution algorithm. Another future extension includes a more compre-
hensive handling of constrained maximum likelihood problems.

We hope that these improvements will make the maxLik package even
more attractive for users and package writers.
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