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Recap’
- regression models for disease frequency

- regression models assessing exposure effect
- modeling time effects
- independence censoring assumption
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Measures of disease frequency
• Prevalence: proportion of people with a disease

π̂ = ”number of people with the disease"
"number of people"

• Incidence rate: frequency of disease occurrence over period τ
△! unit: time−1, e.g. person-year.

λ̂ = ”number of new cases"
"number of person-time at risk"

• Risk: probability of experiencing the disease before time τ

r̂τ = ”number of new cases"
"number of person at risk"
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Estimation "by hand"

• 12-month risk: r̂12(2020) =

60%

, r̂12(2021) =

60%

• 6-month risk: r̂6(2020) =

60%

, r̂6(2021) =

0%

• Incidence rate: λ̂(2020) =

3
3∗3+2∗12 ≈ 0.0909

person-month,
λ̂(2021) =

3
3∗9+2∗12 ≈ .0588

person-month
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Regression models: basic logistic

df

id time status
2 12 0
3 12 0

id time status
4 3 1
6 3 1

id time status
7 3 1

Logistic model: log
(

r
1−r

)
= α ⇐⇒ r = 1

1+exp(−α)

e.prev <- glm(status ∼ 1, data = df,
family = binomial(link="logit"))

c(alpha_hat = as.double(coef(e.prev)),
pi_hat = as.double(1/(1+exp(-coef(e.prev)))))

alpha_hat pi_hat
0.4054651 0.6000000
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Regression models: basic Poisson

Poisson model: log (λ) = α ⇐⇒ λ = exp(α)
e.rate <- glm(status ∼ 1, data = df,

offset = log(time),
family = poisson(link="log"))

c(alpha_hat = as.double(coef(e.rate)),
lambda_hat = as.double(exp(coef(e.rate))))

alpha_hat lambda_hat
-2.39789527 0.09090909

Note: intuition for the offset λ̂ = number of cases
total time at risk denoted D

PY

log (λ) = α ⇐⇒ log (D) = 1 ∗ log (PY ) + α

Lecture 13: Registry data analysis 5 / 47



Recap’ Registry data Standardization Time varying exposures Conclusion

Measures of association

We previously evaluated:
- 12-month risk: r̂(2020) = 60%, r̂(2021) = 60%
- Incidence rate: λ̂(2020) ≈ 0.0909, λ̂(2021) ≈ 0.0588

• difference: r̂(2021) − r̂(2020) = 0
λ̂(2021) − λ̂(2020) = −0.384 person-month

• ratio: r(2021)
r(2020) = 1
λ(2021)
λ(2020) = 0.647

• odd ratio:
(

r(2021)
1−r(2021)

) / (
r(2020)

1−r(2020)

)
= 1.5/1.5 = 1
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Parametrisation of the logistic model

Logistic model: log
(

r(year)
1−r(year)

)
= α + β ∗ year

• in 2020: log
(

r(2020)
1−r(2020)

)
= log (Ω(2020)) = α

• in 2021: log
(

r(2021)
1−r(2021)

)
= log (Ω(2021)) = α + β

So Ω(2020) = exp(α)
Ω(2021) = exp(α + β)

and OR = Ω(2021)
Ω(2020) = exp(β)

△! not feasible in presence of right-censoring:
• Cox/Poisson regression
• IPCW logistic

Lecture 13: Registry data analysis 7 / 47



Recap’ Registry data Standardization Time varying exposures Conclusion

Parametrisation of the logistic model

Logistic model: log
(

r(year)
1−r(year)

)
= α + β ∗ year

• in 2020: log
(

r(2020)
1−r(2020)

)
= log (Ω(2020)) = α

• in 2021: log
(

r(2021)
1−r(2021)

)
= log (Ω(2021)) = α + β

So Ω(2020) = exp(α)
Ω(2021) = exp(α + β)

and OR = Ω(2021)
Ω(2020) = exp(β)

△! not feasible in presence of right-censoring:
• Cox/Poisson regression
• IPCW logistic

Lecture 13: Registry data analysis 7 / 47



Recap’ Registry data Standardization Time varying exposures Conclusion

Measures of association - logistic model

df2

id year time status
1 2020 12 0
2 2020 12 0
3 2020 3 1

id year time status
4 2020 3 1
5 2020 3 1
1 2021 12 0
2 2021 12 0

id year time status
3 2021 9 1
4 2021 9 1
5 2021 9 1

Output from the logistic model:
e.OR <- glm(status ∼ year, data = df2,

family = binomial(link = "logit"))
exp(coef(e.OR))

(Intercept) year2021
1.5 1.0
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Parametrisation of the Poisson model

Poisson model: log (λ(year)) = α + β ∗ year
• in 2020: log (λ(2020)) = α

• in 2021: log (λ(2021)) = α + β

So λ(2021)
λ(2020) = exp(β)

e.RR <- glm(status ∼ year, data = df2,
offset = log(time),
family = poisson(link = "log"))

exp(coef(e.RR))

(Intercept) year2021
0.09090909 0.64705882
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Handling time varying hazard
The "simple" Poisson model is often unrealistic:

λ1 λ2 λ3 λ4
λ5

λ6 λ7

piecewise constant  constant"observed" λ λ

λ

Solutions:
• time-splitting + Poisson: assumes piecewise constant hazard
• Cox model: no assumption on the shape of λ

(semi-parametric estimator)
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Time varying hazard - by hand

03 06 09 12 03

event

survival

survival

event

censoring

event

event

2020 2021
03 06 09 12 03

0 1
0 0
0 0
0 1

0

1

1

2020 2021

• λper year(03/2020 − 09/2020) =

2
2∗3+5∗6 ≈ 0.056

• λper year(09/2020 − 03/2021) =

2
2∗3+2∗6 ≈ 0.111 ≈ 2 ∗ 0.056
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Time varying hazard - via a Poisson model
df3

id time status period
1 6 0 1
2 6 0 1
3 6 0 1
4 6 0 1
5 6 0 1
6 3 1 1

id time status period
7 3 1 1
1 3 1 2
2 6 0 2
3 6 0 2
4 3 1 2

e.rateV <- glm(status ∼ period, data = df3,
offset = log(time),
family = poisson(link="log"))

exp(coef(e.rateV))

(Intercept) period2
0.05555556 2.00000000
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From the hazard to the survival

The 1-year risk of infection is:

r1 year = 1 − S(t) = 1 − (1 − λ1dt)(1 − λ2dt) . . . (1 − λ7dt)
≈ 1 − exp(−(λ1 + λ2 + . . . + λ7)dt)

where S(t) is the survival (i.e. staying infection free).
Approximation only accurate for small time intervals (λ.dt ≪ 1).
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Hazard, cumulative hazard, and survival

(instantaneous) hazard cumulative hazard survival
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Before 09/2020 (i.e. time ≤ 6);
• λ(time) ≈ 0.056
• Λ(time) =

∫ time
s=0 λper year(s)ds ≈ 0.056 × time

• S(time) ≈ exp (−Λ(time)) ≈ exp(−0.056 × time)
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After 09/2020 (i.e. time > 6);
• λ(time) ≈ 0.111
• Λ(time) ≈ 0.056 × 6 + 0.111 × (time − 6)
• S(time) ≈ exp(−0.056 × 6 − 0.111 × (time − 6))
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Why using Poisson/Cox regression?

Difficult to extend "by hand" calculations to deal with:
• censoring
• confounding
• time varying hazards (i.e. time varying incidence rates)

→ model the incidence λ to obtain the risk r

Cox vs. Poisson:
• Cox is a convenient and good "default" model.
• Poisson is useful when exposure/covariate effects are time

varying.
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Another view at Kaplan Meier

Time
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• patients who stay are representative of those who drop-out
• we evaluate the survival effect had nobody been censored!

(same for the risk or treatment effect)
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Independent censoring assumption

In presence of right-censoring, we often assume that:
• survival times (T) and censorship times (C) are independent
• conditional on the covariates (X)

Said otherwise:
• within age and vaccine subgroups, subjects who are not

censored at time t should be representative of all the subjects
who remained at risk.

How critical is that assumption?
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How to armor the planes?

During WW2 (1943), the army asked a research group where and
how much armor to put on the plane:

• it protects planes from the bullets of enemy fighters
• but makes the plane heavier, less maneuverable

Among 400 planes,
380 have returned:

• 320 with no hit
• 32 with 1 hit
• 20 with 2 hit
• 8 with 3 or more hit

"The armor, doesn’t go where the bullet holes are. It goes where
the bullet holes aren’t: on the engines." (Abraham Wald)
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Registry data
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Registry data

In Denmark, data about date of medicine purchase, hospital
admission, or diagnostic of certain diseases can be found in the
danish national registry.

• cover the danish population (leaving in Denmark) and
foreigners living in Denmark.

• different registries for different types of information
(prescription, psychiatry, . . . ) that started at different dates.

What specificities of registry data can you see
• implication for the statistical analysis
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Registry data - some specificities
• typically observational: many covariates to be adjusted for

e.g. avoid confounding by indication

△! follow-up time is subject dependent
e.g. young people have short follow-up time

△! date of inclusion in the registry may not be medically relevant
e.g. date of emigration to Denmark

• large dataset: CIs typically more informative than p-values

• long follow-up time: outcome may not be observable due to
other events e.g. death as competing risk

• time varying exposure: switch of treatment for unknown
reasons e.g. previous treatment was not working,
or no more available, or the switch was planned
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What is wrong with this analysis?
Risk of death between start and end of follow-up: 60%

△! no clear interpretation! Mix of 1 year risk (40%)
and 2 year risk (80%)

→ we could look instead at a specific time horizon (e.g. 1 year)
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Standardization
- motivation and intuition

- examples
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Back to the BCG study
age [0,10] [10,120] [120-300]

bcg status
no censored 238 (94.07%) 1268 (95.05%) 370 (95.85%)

dead 15 (5.93%) 66 (4.95%) 16 (4.15%)
yes censored 30 (100%) 1790 (96.91%) 1356 (95.22%)

dead 0 (0%) 57 (3.09%) 68 (4.78%)

risk
difference -5.929 -1.861 0.63
ratio 0 0.624 1.152

A different risk difference for each age group1:
• θ1 = −5.929% n1 = 269
• θ2 = −1.861% n2 = 3181
• θ3 = 0.63% n2 = 1810

1 age groups are not realistic - just illustrate age-dependent vaccine effects
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What to do?

• ignore the interaction (easy to report but probably wrong)

• keep the interaction (difficult to report, less likely wrong)

• keep the interaction and compute an ’average’ effect:

Ψ = θ1P
(

age ∈ (0, 10]
)

+θ2P
(

age ∈ (10, 120]
)

+θ3P
(

age ∈ (120, 212]
)

Here for the risk difference:

Ψ = −5.929% 269
5274 − 1.861%3181

5274 + 0.630%1810
5274 = −1.22%
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Exercise (bissau study)
age No vaccine Vaccine Number of individuals

0 r0,no = 4.29% r0,yes = 2.21% n0,no = 637, n0,yes = 237
1 r1,no = 5.02% r1,yes = 2.77% n1,no = 421, n1,yes = 468
2 r2,no = 3.82% r2,yes = 1.87% n2,no = 321, n2,yes = 598
ATE r.,no =

4.37%

r.,yes =

2.28%

n.,no = 1379, n.,yes = 1303

(p1, p2, p3) =
( 637 + 237

1379 + 1303 ,
421 + 468

1379 + 1303 ,
321 + 598

1379 + 1303

)
=(32.59%, 33.15%, 34.27%)

r.,no =

32.59% ∗ 4.29% + 33.15% ∗ 5.02% + 34.27% ∗ 3.82%

r.,yes =

32.59% ∗ 2.21% + 33.15% ∗ 2.77% + 34.27% ∗ 1.87%

Ψ =r.,yes − r.,no

≈ 2.09%
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Extension to continuous covariates

 

sample

A = 1 A = 0

2
3 4 5 6

71

sample

A = 1 A = 0

2
3 4 5 6

71

predictions (apply f)

1 2 3

4 5 6 7 4 5 6 7

1 2 3

statistical model
find f such that 

f( (≈

Y1=f(( ( (Y0=f( (

G-formula
^Y1 Y0̂ average vs. average 

^^

,

, ,

outcome

exposure

covariate

f predictor
(may be a black box!)
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Comments

The average treatment effect (ATE) depends on the population.
This is not the case with age-specific vaccine effects nor with
regression coefficients.

Positivity assumption: any patient has a non-0 possibility to
received any treatment.

In a linear regression Y = α + βE + γage + δE × age,
the ATE is a weighted average of the covariate-specific treatment
effect (β, δ).
In a non-linear model logit(p) = α + βE + γage + δE × age,
the ATE may depend on all coefficients!
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Example: bissau study
## get data
bissau <- read.table("https://bozenne.github.io/doc/

Teaching/bissau.txt", header=TRUE)
bissau$status <- bissau$fupstatus=="dead"
bissau$agem <- as.factor(bissau$agem)
## Fit a statistical model (survival):
library(survival)
e.cox <- coxph(Surv(fuptime, status) ∼ agem / bcg,

data = bissau, x = TRUE)
exp(coef(e.cox))

agem1 agem2 agem3 agem4 agem5 agem6
1.1745375 0.8876400 1.1396365 0.8129175 0.4364516 2.3119045

agem0:bcgyes agem1:bcgyes agem2:bcgyes agem3:bcgyes agem4:bcgyes agem5:bcgyes
0.5088731 0.5462568 0.4850764 0.7142407 1.3237650 2.6288095

agem6:bcgyes
0.1657378
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Example: bissau study

## Predict the counterfactual risks:
library(riskRegression)
grid0 <- data.frame(bcg = "no", agem = factor(0:2))
grid1 <- data.frame(bcg = "yes", agem = factor(0:2))
r0 <- predictRisk(e.cox, newdata = grid0, time = 150)
r1 <- predictRisk(e.cox, newdata = grid1, time = 150)
round(100*data.frame(no = r0, yes = r1),2)

no yes
1 4.29 2.21
2 5.02 2.77
3 3.82 1.87
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Standardization "by hand"

## Predict the counterfactual risks (riskRegression):
bissau0 <- bissau[bissau$agem %in% 0:2,]
bissau0$bcg <- "no"
r0 <- predictRisk(e.cox, newdata = bissau0, time = 150)

bissau1 <- bissau[bissau$agem %in% 0:2,]
bissau1$bcg <- "yes"
r1 <- predictRisk(e.cox, newdata = bissau1, time = 150)

## Compare the average risk across treatment groups:
c(mean(r0), mean(r1), mean(r1) - mean(r0))

[1] 0.04369355 0.02279141 -0.02090215
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Standardization via riskRegression

e.ate <- ate(e.cox, treatment = "bcg", time = 150,
data = bissau[bissau$agem %in% 0:2,])

summary(e.ate)

[...]
- Difference in standardized risk (B-A) between time zero and ’time’

risk(bcg=A) risk(bcg=B) difference ci p.value
0.0437 0.0228 -0.0209 [-0.03;-0.01] 0.00192

[...]

△! The uncertainty about the prediction should be accounted for.
Do not use:
unlist(t.test(r1, r0)[c("estimate","p.value")])

estimate.mean of x estimate.mean of y p.value
0.02279141 0.04369355 0.00000000
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Take home message

The ATE enables to summarize complex treatment effects into a
single number that is still interpretable

• machine learning technics can be used!
• more sophisticated estimators exist (double robust, TMLE)

The summarized effect is now population dependent:
△! should be performed over a representative population
→ well suited for studies on national registries
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Time varying exposures

Can you assess whether switching is beneficial? How?
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Parameter of interest

What do we mean by beneficial?
• hazard: the instantaneous risk of death is lower after

switching compare to staying

• risk: unclear! (say at 1 year)
- staying vs. switching after 1 month
- staying vs. switching after 3 months
- staying vs. switching if initial drug seems ineffective
- staying vs. switching if initial drug seems harful
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’Traditional’ experimental studies
• single treatment received just after baseline

• cross over
• switch vs no switch between treatments

Immortal time bias: comparing patients who did not switch to
those who did gives a survival advantage to those who switched.
They ’cannot’ die between inclusion and switch of treatment

Lecture 13: Registry data analysis 36 / 47



Recap’ Registry data Standardization Time varying exposures Conclusion

’Traditional’ experimental studies

• single treatment received just after baseline
• cross over

• switch vs no switch between treatments

Immortal time bias: comparing patients who did not switch to
those who did gives a survival advantage to those who switched.
They ’cannot’ die between inclusion and switch of treatment

Lecture 13: Registry data analysis 36 / 47



Recap’ Registry data Standardization Time varying exposures Conclusion

’Traditional’ experimental studies

• single treatment received just after baseline
• cross over
• switch vs no switch between treatments

Immortal time bias: comparing patients who did not switch to
those who did gives a survival advantage to those who switched.
They ’cannot’ die between inclusion and switch of treatment

Lecture 13: Registry data analysis 36 / 47



Recap’ Registry data Standardization Time varying exposures Conclusion

’Traditional’ experimental studies

• single treatment received just after baseline
• cross over
• switch vs no switch between treatments

Immortal time bias: comparing patients who did not switch to
those who did gives a survival advantage to those who switched.
They ’cannot’ die between inclusion and switch of treatment

Lecture 13: Registry data analysis 36 / 47



Recap’ Registry data Standardization Time varying exposures Conclusion

Example 1 - (Lange and Keiding, 2014)
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Example 2 - (Shariff et al., 2008)
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From person to person-time
We cannot distinguish switchers from non-switchers
id event start stop switch
1 TRUE 0 3.0 NA
2 TRUE 0 3.0 NA
3 TRUE 0 5.0 4.0
4 TRUE 0 6.0 4.5
5 TRUE 0 5.5 NA

Instead, we have at risk time before switch and after switch
id event start stop switch
1 TRUE 0.0 3.0 FALSE
2 TRUE 0.0 3.0 FALSE
3 FALSE 0.0 4.0 FALSE
3 TRUE 4.0 5.0 TRUE
4 FALSE 0.0 4.5 FALSE
4 TRUE 4.5 6.0 TRUE
5 TRUE 0.0 5.5 FALSE

Lecture 13: Registry data analysis 39 / 47



Recap’ Registry data Standardization Time varying exposures Conclusion

Statistical analysis with time varying exposures

△! This is a difficult topic!

Cox model but requires strong assumptions:
• reason for switching are not related to the outcome
• switching effect constant over time

e.cox <- coxph(Surv(start, stop, event) ∼ switch,
data = df.switch)

Otherwise more complex methods are needed (Hernán and Robins
(2010), chapter 19-22), which involve modeling the probability of
switching and using them to ’re-weight’ the data, hoping to
rebalance confounders.
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Intuition behind the Cox model
Matching: compare individuals at risk at the same time
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Representation of the Cox model

Multiplicative effect of the treatment (eβ) on the rates (λ(t)):

• same at all follow-up times
• same regardless to when the new treatment was initiated
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Interpret carefully
Going to concert vs. staying bored:

• lower instantaneous risk (λ25
λ15

< 1)
• higher long-term risk (as one is likely to start drinking)

Being bored

Going to concertDrinking Drinking
Going to concert

DeathDeath

λ12λ13

λ25λ35

λ24

λ45

λ15
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What we have seen today
✔ Illustration of the independent censoring assumption

• Kaplan Meier as a re-weighting approach
• Treating death as censoring is a bad idea

✔ Introduction to registry data
• choice of the time scale
• recognizing time varying exposure
• dealing with individual specific follow-up times

✔ Standardization/ATE
• summarize into single number the treatment effect

(compatible with very flexible models)
• positivity assumption
• require a meaningful population

✔ Handling time varying exposures
• what not to do: ’same as usual’ → immortal time bias
• what to do: split follow-up time
• (greatly) complexify data analysis: reach for help
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Survivorship bias
From Hernán et al. (2008):
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Immortal time bias
From Jensen et al. (2007):
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