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- regression models for disease frequency
- regression models assessing exposure effect
- modeling time effects
- independence censoring assumption
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Measures of disease frequency

® Prevalence: proportion of people with a disease

. 'number of people with the disease"
m =

"number of people"

® Incidence rate: frequency of disease occurrence over period 7
A unit: time™!, e.g. person-year.

" n
3 number of new cases

"number of person-time at risk"

e Risk: probability of experiencing the disease before time 7

"number of new cases"

rr =

"number of person at risk"
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Estimation "by hand"

12-montbh risk: 712(2020) =
76(2020)

¢ Incidence rate: \(2020)
2(2021) =
event
survival
survival
event
event
X
event
event
01 04 07 10 01
2020 2021
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= , 76(2021) =
= person-month,
person-month
event
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event
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Estimation "by hand"

® 12-month risk: #12(2020) = 60%, #12(2021) = 60%

® 6-month risk:
* Incidence rate: (2020)

~

event

survival

survival

event

event

event

event

01 04 07 10 01
2020 2021
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_ 3
T 3%x342x12

7(2020) = 60%, 75(2021) = 0%

= 0.0909 person-month,
~ .0588 person-month

event

survival
survival
event
—_—X
event
X
event
—X
event
Y
01 04 07 10 01
2021 2022
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Regression models: basic logistic

df
id time status id time status id time status
2 12 0 4 3 1 7 3 1
3 12 0 6 3 1

s . r _ _ 1
Logistic model: log (ﬁ) =0 = = Tepa)

e.prev <- glm(status ~ 1, data = df,
family = binomial(link="logit"))

c(alpha_hat = as.double(coef(e.prev)),
pi_hat = as.double(1/(1l+exp(-coef(e.prev)))))

alpha_hat pi_hat
0.4054651 0.6000000
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Regression models: basic Poisson

Poisson model: log(\) =a <= )\ =-exp(a)

e.rate <- glm(status ~ 1, data = df,
offset = log(time),
family = poisson(link="log"))

c(alpha_hat = as.double(coef(e.rate)),
lambda_hat = as.double(exp(coef(e.rate))))

alpha_hat lambda_hat
-2.39789527 0.09090909

RO N _ number of cases D
Note: intuition for the offset A = total fme ot rok denoted By

log (\) = a <= log (D) =1 xlog (PY) + «
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Measures of association

We previously evaluated:
- 12-month risk: #(2020) = 60%, #( ) =60%
- Incidence rate: A(2020) ~ 0.0909, A( ) ~ 0.0588

* difference: 7( ) —7(2020) =0
A( ) — A(2020) = —0.384 person-month

® ratio: % =1

A
7AE2020§ = 0.647

* odd ratio: ({C2).) / (£C29) = 15/15 =1

Lecture 13: Registry data analysis
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Parametrisation of the logistic model

1—r(year)
e in 2020: log (%) = log (2(2020)) = «

* in 2021 log (257 ) = log (Q(2021)) = a + A

Logistic model: Iog( r(year) ) =a+ 0 year

So Q(2020) = exp(«)
Q(2021) = exp(a + B)

and OR = ggg;é; = exp(f)

Lecture 13: Registry data analysis
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Parametrisation of the logistic model

Logistic model: log (li(ry(ii?r)) =a+ [ x* year

* in 2020: log (%) = log (Q(2020)) = «

* in 2021 log (257 ) = log (Q(2021)) = a + A

So Q(2020) = exp(«)
Q(2021) = exp(a + )
and OR = % = exp(p)

/\ not feasible in presence of right-censoring:
e Cox/Poisson regression
® |[PCW logistic

Lecture 13: Registry data analysis 7 / 47



Recap’ Registry data Standardization Time varying exposures Conclusion

0000000 e0 0000 000000 00000 [e]
000000 00000 00000 (e]e]e}
000

Measures of association - logistic model

df2
id year time status id year time status id year time status
12020 12 0 4 2020 3 1 3 2021 9 1
2 2020 12 0 5 2020 3 1 4 2021 9 1
3 2020 3 1 1 2021 12 0 5 2021 9 1
2 2021 12 0

Output from the logistic model:

e.OR <- glm(status ~ year, data = df2,
family = binomial(link = "logit"))
exp(coef (e.0R))

(Intercept) year2021
1.5 1.0

Lecture 13: Registry data analysis 8 / 47




Recap’ Registry data Standardization Time varying exposures
0O0000000e 0000 000000 00000
000000 00000 00000

000

Parametrisation of the Poisson model

Poisson model: log (A(year)) = a + /3  year
® in 2020: log (A\(2020)) = o
® in 2021: log (A( ) =a+p

So % = exp(B)

Conclusion

[e]
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e.RR <- glm(status ~ year, data = df2,
offset = log(time),
family = poisson(link = "log"))
exp(coef (e.RR))

(Intercept) year2021
0.09090909 0.64705882

Lecture 13: Registry data analysis
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Handling time varying hazard

The "simple" Poisson model is often unrealistic:

800 "observed" A piecewise constant A constant

o

(]

©

8 600+

[ =

[} 1

b}

[$]

4

£ 4007 A N

2

9 200

g i .

8 A i

0= hM__.‘LL.L..uhu i 2 )\3 -
L] L) L] L] L] L) L] L] L] L) L] L]
apr jul okt jan apr jul okt jan apr jul okt jan
i date
Solutions:

® time-splitting + Poisson: assumes piecewise constant hazard

® Cox model: no assumption on the shape of A
(semi-parametric estimator)
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Time varying hazard - by hand

Conclusion
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event 0 1
X JE—')
i 0 X
survival 0
)
A——
survival 0 0
[
A o)
event 0 1
[
censoring - 0
—o —0
event 1
—X
event 1
—x
03 06 09 12 03 03 06 09 12 03
2020 2021 2020 2021

® Aper year(03/2020 — 09,/2020)
® Aper year(09/2020 — 03/2021) =

Lecture 13: Registry data analysis
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Time varying hazard - by hand
event 0 1
- —o
i 0
survival 0
—»o
S )
survival 0 0
—o
)
event 0 1
—o
censoring - 0
— o —»o
event 1
—X
event 1
—x
03 06 09 12 03 03 06 09 12 03
2020 2021 2020 2021
_ 2 ~
® Aper year(03/2020 — 09/2020) = 52— ~ 0.056
2 ~ o~
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df3

id time status period

id time status period

1 6 0 1 7 3 1 1
2 6 0 1 1 3 1 2
3 6 0 1 2 6 0 2
4 6 0 1 3 6 0 2
5 6 0 1 4 3 1 2
6 3 1 1
e.rateV <- glm(status ~ period, data = df3,

offset =

log(time),

family = poisson(link="log"))

exp(coef (e.rateV))

(Intercept)

period?2

0.05555556 2.00000000

Lecture 13: Registry data analysis
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From the hazard to the survival

possible states probability
M

Infection A dt

A2, Infection (1-A,dt)A,dt

1-A, As )
— Infection  (1-A;dt)(1-Adt)Asdt
1A
Survival (1-A1dt)(1-A,dt)(1-Azdt)
gt dt T at time

Lecture 13: Registry data analysis

Conclusion
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From the hazard to the survival

possible states probability
M

Infection A dt

A2, Infection (1-Adt)Aydt

1-A
2 N2+ Infection  (1-A,dE)(1-Adt)Adt

1&
Survival (1-A1dt)(1-A,dt)(1-Azdt)

time

gt dat T dt
The 1-year risk of infection is:
Myear =1 —5(t) =1— (1 — Aidt)(1 — Xodt) ... (1 — A7dt)
~1—exp(—(A1+ X2+ ...+ A7)dt)

where S(t) is the survival (i.e. staying infection free).

Approximation only accurate for small time intervals (A dt < 1).
Lecture 13: Registry data analysis 13 / 47
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Hazard, cumulative hazard, and survival

(instantaneous) hazard cumulative hazard survival
0.11. —— 1.001 1.0
0.104
0.75+
0.8+
0.094
g
= 0.50
g‘ 0.08+
0.64
0.07: 0.25
0.064 0.4
0.004

S dhe dhe s Mh M ke n%%g Bo B e e M b
Before 09/2020 (i.e. time < 6);
® \(time) ~ 0.056
® A(time) = fst':"(',e per year(5)ds = 0.056 x time

® S(time) ~ exp (—A(time)) ~ exp(—0.056 x time)

Lecture 13: Registry data analysis 14 / 4—7
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Hazard, cumulative hazard, and survival

(instantaneous) hazard cumulative hazard survival
0.11. —— 1.001 1.0
0.104
0.75+
0.8+
0.094
g
= 0.50
g‘ 0.08+
0.64
0.07: 0.25
0.064 0.4
0.004

After 09/2020 (ie. time > 6):
e \(time) ~ 0.111
® A(time) ~ 0.056 x 6 + 0.111 x (time — 6)
® S(time) ~ exp(—0.056 x 6 — 0.111 x (time — 6))
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Why using Poisson/Cox regression?

Difficult to extend "by hand" calculations to deal with:

® censoring

e confounding

® time varying hazards (i.e. time varying incidence rates)
— model the incidence A to obtain the risk r

Cox vs. Poisson:
e Cox is a convenient and good "default" model.

® Poisson is useful when exposure/covariate effects are time
varying.

Lecture 13: Registry data analysis 15 / 47
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Another view at Kaplan Meier

A

50% 75% 100 %
|

Survival probability

25 %

0%

Subjects: 4 4 4 3 3 3 2 2 1 1 1
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Another view at Kaplan Meier

() ) ()

S
o -
=4
B
£ o
o ~
©
Qo
SIS
Q o
T 0
£
[N
=3 o
* N
B
o
0 2 4 6 8
Time
Subjects: 4 4 4 3 3 3 2 2 1 1 1

® patients who stay are representative of those who drop-out

® we evaluate the survival effect had nobody been censored!

Lecture 13:

same for the risk or treatment effect
egistry data analysis ) 16 / 47
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Independent censoring assumption

In presence of right-censoring, we often assume that:
e survival times (T) and censorship times (C) are independent

e conditional on the covariates (X)

Said otherwise:
® within age and vaccine subgroups, subjects who are not
censored at time t should be representative of all the subjects

who remained at risk.

How critical is that assumption?

17 / 47
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How to armor the planes?

During WW?2 (1943), the army asked a research group where and
how much armor to put on the plane:

® it protects planes from the bullets of enemy fighters

® but makes the plane heavier, less maneuverable
Among 400 planes,
380 have returned:

® 320 with no hit

e 32 with 1 hit

® 20 with 2 hit

® 8 with 3 or more hit

Lecture 13: Registry data analysis 18 / 47
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How to armor the planes?

During WW?2 (1943), the army asked a research group where and
how much armor to put on the plane:

® it protects planes from the bullets of enemy fighters

® but makes the plane heavier, less maneuverable

Among 400 planes,
380 have returned:

® 320 with no hit

32 with 1 hit

20 with 2 hit

8 with 3 or more hit

"The armor, doesn't go where the bullet holes are. It goes where
the bullet holes aren’t: on the engines." (Abraham Wald)
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Registry data

Conclusion

[e]
(e]e]e}

1 —
o —
0 — eveat event
7 — Type of event S R
— o [ & - Y
&1 & i e 2 N
N — inisirath >
of— ity S ) <N A =
2 —a I 0 calendar time 0 time from inclusion (t)
1 .
2050 2022 o0 20
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Registry data

In Denmark, data about date of medicine purchase, hospital
admission, or diagnostic of certain diseases can be found in the
danish national registry.

® cover the danish population (leaving in Denmark) and
foreigners living in Denmark.

e different registries for different types of information
(prescription, psychiatry, ...) that started at different dates.

What specificities of registry data can you see ‘@

® implication for the statistical analysis

Lecture 13: Registry data analysis 20 / 47
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Registry data - some specificities

® typically observational: many covariates to be adjusted for
e.g. avoid confounding by indication

>

follow-up time is subject dependent
e.g. young people have short follow-up time

>

date of inclusion in the registry may not be medically relevant
e.g. date of emigration to Denmark

® large dataset: Cls typically more informative than p-values

® |ong follow-up time: outcome may not be observable due to
other events e.g. death as competing risk

® time varying exposure: switch of treatment for unknown
reasons e.g. previous treatment was not working,
or no more available, or the switch was planned

Lecture 13: Registry data analysis 21 / 4—7
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What is wrong with this analysis?
Risk of death between start and end of follow-up: 60%

om
L
Type of event

6 ®  censoring

Patient id

5

—h
—h
——h
A infection
A —
.
—h

Administrative
3w censoring
(end of follow—up)
2
1
T T )
2020 2022 2024 2026
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What is wrong with this analysis?
Risk of death between start and end of follow-up: 60%

A\ o clear interpretation! Mix of 1 year risk (40%)
and 2 year risk (80%)

— we could look instead at a specific time horizon (e.g. 1 year)

Type of event

®  censoring

ll;emid
it

A infection

Administrative
censoring
(end of follow-up)

T T )
2020 2022 2024 2026
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What is wrong with this analysis?
Risk of death between start and end of follow-up: 60%

A\ o clear interpretation! Mix of 1 year risk (40%)
and 2 year risk (80%)

— we could look instead at a specific time horizon (e.g. 1 year)

Type of event

®  censoring

OO
I

A infection

Administrative
censoring
(end of follow-up)

T T )
2020 2022 2024 2026

Lecture 13: Registry data analysis 22 / 4—7



Standardization
©00000

Standardization

- motivation and intuition
- examples
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Back to the BCG study

age [0,10] [10,120] [120-300]
bcg status
no censored 238 (94.07%) 1268 (95.05%) 370 (95.85%)
dead 15 (5.93%) 66 (4.95%) 16 (4.15%)
yes censored 30 (100%) 1790 (96.91%) 1356 (95.227%)
dead 0 (0% 57 (3.09%) 68 (4.78%)
risk
difference -5.929 -1.861 0.63
ratio 0 0.624 1.152
A different risk difference for each age group®:
® 0 = —5.929% n = 269
® () = —1.861% ny, = 3181
® 03 =0.63% ny = 1810

! age groups are not realistic - just illustrate age-dependent vaccine effects

Lecture 13: Registry data analysis 24 / 47
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What to do?

® ignore the interaction (easy to report but probably wrong)

® keep the interaction (difficult to report, less likely wrong)

Lecture 13: Registry data analysis 25 / 47
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What to do?

® ignore the interaction (easy to report but probably wrong)
® keep the interaction (difficult to report, less likely wrong)

® keep the interaction and compute an 'average’ effect:
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What to do?

® ignore the interaction (easy to report but probably wrong)
® keep the interaction (difficult to report, less likely wrong)

® keep the interaction and compute an 'average’ effect:
V= 91P(age € (0, 10]>+92P(age € (10, 120]) +65P (age € (120, 212])

Here for the risk difference:

269 3181 1810
—1.861% + 0.630%

¥ = —5.9299
45274 5274 5274

=-1.22%

Lecture 13: Registry data analysis 25 / 47
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Exercise (bissau study)

age No vaccine Vaccine Number of individuals

0 ,no = 4.29% 10,yes = 2.21% Nno,no = 637, no,yes = 237
1 Mo =5.02% ryes =2.77%  Nino = 421, N1 yes = 468
2 rno =3.82% ryes =187%  npno =321, noyes = 598
ATE 1 o = ryes = N.no = 1379, n_yes = 1303

v =l yes — I no

Lecture 13: Registry data analysis 26 / 47
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Exercise (bissau study)

age No vaccine Vaccine Number of individuals

0 ,no = 4.29% 10,yes = 2.21% Nno,no = 637, no,yes = 237
1 Mno = 5.02% M,yes = 277%  nino = 421, N,yes = 468
2 rno =3.82% ryes =187%  npno =321, noyes = 598
ATE  Fno=431% ryes=228% nno=1379, n e = 1303

637+ 237 421+ 468 321 + 508
(P1, P2, P3) = (1379 11303’ 1379 + 1303’ 1379 + 1303>
—(32.59%, 33.15%, 34.27%)
Fno =32.59% % 4.29% + 33.15% * 5.02% + 34.27% * 3.82%
ryes =32.59% % 2.21% + 33.15% * 2.77% + 34.27% * 1.87%
V =r yes — I'.no & 2.09%

Lecture 13: Registry data analysis 26 / 47
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Extension to continuous covariates

®

(YL Y YY)

statistical model

find f such tha °
o ~
(&)=

redictions (apply f)

‘outcome

@ exposure

° !
¢® cova riate

P=r(oe) =l

Ads AR
%% %%

G-formula

/\ A\
average Y! vs. average Y9

f predictor
(may be a black box!)

Lecture 13: Registry data analysis
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Comments

The average treatment effect (ATE) depends on the population.
This is not the case with age-specific vaccine effects nor with
regression coefficients.

Positivity assumption: any patient has a non-0 possibility to
received any treatment.

In a linear regression Y = o+ BE + yage + dE x age,

the ATE is a weighted average of the covariate-specific treatment
effect (53, 9).

In a non-linear model logit(p) = o + BE + yage + JE x age,

the ATE may depend on all coefficients!

Lecture 13: Registry data analysis 28 / 47
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Example: bissau study

Conclusion
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## get data

bissau <- read.table("https://bozenne.github.io/doc/
Teaching/bissau.txt", header=TRUE)

bissau$status <- bissau$fupstatus=="dead"

bissau$agem <- as.factor(bissau$agem)

## Fit a statistical model (survival):

library(survival)

e.cox <- coxph(Surv(fuptime, status) ~ agem / bcg,

data = bissau, x = TRUE)
exp(coef (e.cox))

ageml agem2 agem3 agem4
1.1745375 0.8876400 1.1396365 0.8129175

agemb
0.4364516

agemO:bcgyes ageml:bcgyes agem2:bcgyes agem3:bcgyes ageméd:bcgyes

0.5088731 0.5462568 0.4850764 0.7142407
agem6:bcgyes
0.1657378

Lecture 13: Registry data analysis
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Example: bissau study

Time varying exposures

Conclusion
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## Predict the counterfactual risks:
library(riskRegression)

:2))
150)
150)

grid0 <- data.frame(bcg = "no", agem = factor(0:2))
gridl <- data.frame(bcg = "yes", agem = factor(0
r0 <- predictRisk(e.cox, newdata = grid0, time =
rl <- predictRisk(e.cox, newdata = gridl, time =
round (100*data.frame(no = r0, yes = r1),2)

no yes
14.29 2.21
2 5.02 2.77
3 3.82 1.87

Lecture 13: Registry data analysis
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Standardization "by hand"

## Predict the counterfactual risks (riskRegression):
bissau0 <- bissau[bissau$agem %inJ, 0:2,]
bissauO$bcg <- "no"

r0 <- predictRisk(e.cox, newdata = bissauO, time = 150)
bissaul <- bissau[bissau$agem %in}% 0:2,]

bissaul$bcg <- "yes"

rl <- predictRisk(e.cox, newdata = bissaul, time = 150)

## Compare the average risk across treatment groups:
c(mean(r0), mean(rl), mean(rl) - mean(r0))

[1] 0.04369355 0.02279141 -0.02090215

Lecture 13: Registry data analysis 31 / 47
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Standardization via riskRegression

e.ate <- ate(e.cox, treatment = "bcg", time = 150,
data = bissau[bissau$agem %in% 0:2,])
summary (e.ate)

[...]
- Difference in standardized risk (B-A) between time zero and °’
risk(bcg=A) risk(bcg=B) difference ci p.value
0.0437 0.0228 -0.0209 [-0.03;-0.01] 0.00192
[...]
/A The uncertainty about the prediction should be accounted for.
Do not use:

unlist(t.test(rl, r0) [c("estimate","p.value")])

estimate.mean of x estimate.mean of y p.value
0.02279141 0.04369355 0.00000000
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Take home message

The ATE enables to summarize complex treatment effects into a
single number that is still interpretable

® machine learning technics can be used!

® more sophisticated estimators exist (double robust, TMLE)

The summarized effect is now population dependent:
/\ should be performed over a representative population

— well suited for studies on national registries
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Time varying exposures
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Time varying exposures

Can you assess whether switching is beneficial? How?

event event
o—Hl o—H
event event
o—H o—H
event event
o——R—F o ¢ A—E]
event event
A = Ay =
event event
® Q\ a ® Q\ al
0 calendar time 0 time from inclusion (t)
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Time varying exposures
0®000

Parameter of interest

What do we mean by beneficial?

® hazard: the instantaneous risk of death is lower after
switching compare to staying

e risk: unclear! (say at 1 year)
- staying vs. switching after 1 month
- staying vs. switching after 3 months
- staying vs. switching if initial drug seems ineffective
- staying vs. switching if initial drug seems harful
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"Traditional’ experimental studies

® single treatment received just after baseline

outcome
A0 R —0
&——=a o——=a
Q—m Q——&
calendar time 0 time from inclusion (t)
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"Traditional’ experimental studies

® single treatment received just after baseline

® cross over

N—a———= R N——O————=

o g1 ® SRS 0

& s—¢ ® o 0
calendar time () time from inclusion (t)
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"Traditional’ experimental studies

® single treatment received just after baseline
® cross over

® switch vs no switch between treatments

event event
< ® — — 8
event event
o—H —H
event - event
Q)%\ event event
& A a ¢ A £
calendar time 0 time from inclusion (t)
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"Traditional’ experimental studies

® single treatment received just after baseline
® cross over

® switch vs no switch between treatments

event event
< ® — — 8
event event
o—+H o—H
event - event
Q)%\ % event % event
\S ® £ ®© - 3|
calendar time 0 time from inclusion (t)

Immortal time bias: comparing patients who did not switch to
those who did gives a survival advantage to those who switched.
They 'cannot’ die between inclusion and switch of treatment
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Example 1 - (Lange and Keiding, 2014)

Conclusion

[e]
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Letters to the Editor

Skin cancer as a marker of sun exposure

Brondum-Jacobsen et al. recently published in this journal’
analyses of Danish register data concerning myocardial in-
farction, hip fracture and death from any cause, using inci-
dence of skin cancer as indicator of high exposure to
sunlight. The basic idea in the paper is that those who get a
skin cancer diagnosis at any age are supposed to have been
more exposed to the sun during their life than those who
do not, and apparently the authors find it relevant to use
ordinary prospective survival analysis to compare inci-
dence of myocardial infarction, hip fracture and death
from any cause between the two groups: those who
(at some point) get a skin cancer diagnosis and those who
do not.

Lecture 13: Registry data analysis

37 /47



Recap’

Registry data

000000000 0000 000000
000000 00000
000

Standardization

Time varying exposures
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Example 1 - (Lange and Keiding, 2014)

Letters to the Editor

Skin cancer as a marker of sun exposure: a case of serious

immortality bias

From Theis Lange* and Niels Keiding

Department of Biostatistics, Institute of Public Health, University of Copenhagen, Denmark

Brondum-Jacobsen et al. recently published in this journal’
analyses of Danish register data concerning myocardial in-
farction, hip fracture and death from any cause, using inci-
dence of skin cancer as indicator of high exposure to
sunlight. The basic idea in the paper is that those who get a
skin cancer diagnosis at any age are supposed to have been
more exposed to the sun during their life than those who
do not, and apparently the authors find it relevant to use
ordinary prospective survival analysis to compare inci-
dence of myocardial infarction, hip fracture and death
from any cause between the two groups: those who
(at some point) get a skin cancer diagnosis and those who
do not.

Unfortunately, such an analysis is seriously flawed,
because the definition of one of the two groups to be com-
pared conditions on the future: in order to get a skin cancer

Lecture 13: Registry data analysis

diagnosis, and thus become a member of the skin cancer
group, it is at least necessary to survive until age of diagno-
sis, but the authors’ analysis does not take this condition-
ing into account. Put another way: for those in the skin
cancer group it is impossible to die until the age of diagno-
sis of the cancer, the so-called immortal person-time.*

It is seen in the lower left panel of Figure
2! that those who get non-melanoma skin cancer at some
age have a hazard ratio of dying from any cause in the age
interval 40-49 years of about 0.2 vs those who never get a
non-melanoma skin cancer diagnosis. A main reason for
this is probably that very few of those with non-melanoma
skin cancer are at all at risk for dying—most of the mem-
bers of this group get their skin cancer diagnosis at ages

>50 years and are therefore by design immortal in the age

interval 40-49. 37 / 47

Conclusion



Recap’ Registry data Standardization Time varying exposures Conclusion

000000000 0000 000000 0000e o
000000 00000 00000 (e]e]e}
000

Example 2 - (Shariff et al., 2008)

In the March 2007 issue of JASN, Hemmelgarn et al.! reported a 50% reduction in the risk for all-cause mortality for patients
who had chronic kidney disease (CKD) and attended multidisciplinary care (MDC) clinics compared with those who re-
ceived usual care. Their survival curves showed a clear divergence in rates of death between the two groups in the first 6 months
of follow-up. We suggest that it is less plausible from a biologic perspective that use of MDC clinics immediately reduces the
short-term risk for death. Rather, much of the early observed effect may be due to survivor treatment selection bias, also
known as immortal time bias.

SCr test MDC
ohort entry d: clinic visit
1.00.
v '

MDC | — SV | > Multidisciplinary care
clinic group ! : | 075 oo
H ‘Immortal time H 2 et
; (subject guaranteed : 3 No multidisciplinary care
: ! 1o be alive) ' °
H H | S 050
July 1 December 31 December 31 December 31 G
2001 2001 2002 2004 2
L fe——e— | : 2 oz
non-MDC group ' i ! a
t [ Follow-up time
SCr test X Death 0001, . . T v v T r
ohort entry dat 00 05 10 15 20 25 30 35

[ rtal time bi: "
B Immortal time bizs Follow-up time (years)
Figure 3. Immortal time bias. Situation in which MDC clinic visit occurred after serum
creatinine test. Exposed patient was guaranteed to be alive between the
test date and the clinic visit, resulting in a period of “immortal time.”

Figure 2. Kaplan-Meier survival curve
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From person to person-time

We cannot distinguish switchers from non-switchers

id event start stop switch

1 TRUE 0 3.0 NA
2 TRUE 0 3.0 NA
3 TRUE 0 5.0 4.0
4 TRUE 0 6.0 4.5
5 TRUE 0 5.5 NA

Instead, we have at risk time before switch and after switch

id event start stop switch
1 TRUE 0.0 3.0 FALSE

2 TRUE 0.0 3.0 FALSE
3 FALSE 0.0 4.0 FALSE
3 TRUE 4.0 5.0 TRUE
4 FALSE 0.0 4.5 FALSE
4 TRUE 4.5 6.0 TRUE
5 TRUE 0.0 5.5 FALSE

Lecture 13: Registry data analysis
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Statistical analysis with time varying exposures

/\ This is a difficult topic!

Cox model but requires strong assumptions:
® reason for switching are not related to the outcome

® switching effect constant over time

e.cox <- coxph(Surv(start, stop, event) ~ switch,
data = df.switch)

Otherwise more complex methods are needed (Hernan and Robins
(2010), chapter 19-22), which involve modeling the probability of
switching and using them to 're-weight’ the data, hoping to
rebalance confounders.
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Conclusion

Intuition behind the Cox model

Matching: compare individuals at risk at the same time

event

—H L ¢
Y ewant neutral favor® vs Q)—ﬁ\
o—H L ¢

event
| S ® N
O &
o—1  ——
0 time from inclusion (t) O time from inclusion (t)
L ¢ L ¢
favor Q)—»Q\vs L & neutral
L & L &
¢ * * %
event
3 i .
event

o— A — ® A CF
0 time from inclusion (t) 0 time from inclusion (t)
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Representation of the Cox model

rate

rate

MDD )Gy e

time time

Multiplicative effect of the treatment (e”) on the rates (A\(t)):
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Conclusion
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Representation of the Cox model

rate

rate

MDD )Gy e

time time

Multiplicative effect of the treatment (e”) on the rates (A\(t)):
® same at all follow-up times

® same regardless to when the new treatment was initiated
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Interpret carefully

Going to concert vs. staying bored:

Being bored

Q12
)\24
Lo Drinking .
Drinking Going to concert ﬂ Going to concert
A5 Nos

Death
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Interpret carefully
Going to concert vs. staying bored:
® lower instantaneous risk (32 < 1)
15

® higher long-term risk (as one is likely to start drinking)

Being bored

)\] 2
)\24
Lo Drinking .
Drinking Going to concert ﬂ Going to concert
A5 Nos

Death
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What we have seen today
Illustration of the independent censoring assumption

Kaplan Meier as a re-weighting approach

Treating death as censoring is a bad idea

Introduction to registry data
choice of the time scale
recognizing time varying exposure

dealing with individual specific follow-up times

Standardization/ATE

summarize into single number the treatment effect
(compatible with very flexible models)

positivity assumption

require a meaningful population

Handling time varying exposures
what not to do: 'same as usual’ — immortal time bias
what to do: split follow-up time

(greatly) complexify data analysis: reach for help
: Registry data analysis

Conclusion
°
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Survivorship bias
From Hernan et al. (2008):

-I_he article by Euser et al! in this issue of EPIDEMIOLOGY
shows that study participants with complete follow-up are
healthier and have better age-specific cognitive scores than
those with incomplete follow-up. A well-known potential
consequence of these differences is selection bias: when the
analysis is restricted to individuals with complete follow-up
(eg, those not too ill to participate), it is possible to find an
exposure-outcome association that is not due to the causal
effect of the exposure on the outcome.”> An extreme case of
“incomplete follow-up” for nonfatal outcomes is death; hence
censoring by death may introduce selection bias. In studies of
old people, this selection bias may be large because the death
rate is high and death is often affected by the exposure.? Here
we provide some empirical support for selection bias due to
censoring by death in epidemiologic studies of the effect of

cigarette smoking on risk of dementia.
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Immortal time bias

From Jensen et al. (2007):

(a) Retrospective updating approach
1 Vac SV sv
o ] e e s
2 Vac SV 1 NSV
= ] e e
SV Vi sv
3 lac
4 SV _Vac t NSV
5 Vac NSV SV
| e P
6 Vac NSV 1 NSV
Ve NSV
7 act
NSV
8 T
+ + t
Birth Visit 1 Visit 2

SV = Seen vaccination card

NSV = Not seen vaccination card
[ = classified as unvaccinated
[ = classified as vaccinated

Vac = vaccinated, 1 = dead.

Lecture 13: Registry data analysis

Ret i dati h
P P & app

In the retrospective updating approach, vaccination status
is used as a time-varying variable changing from unvacci-
nated to vaccinated, on the exact date of vaccination. This
is a standard statistical approach if vaccination informa-
tion is collected for all children, regardless of survival
status.
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Immortal time bias
From Jensen et al. (2007):

(a) Retrospective updating approach
1 Vac SV sv
o ] e e s
2 Vac SV 1 NSV
= E] i e
SV _ Vi SV
3 lac
4 SV _Vac t NSV
5 Vac NSV SV
| e P
6 Vac NSV 1 NSV
=t
Ve NSV
7 act
NSV
8 T
Birth Visit 1 Visit 2

SV = Seen vaccination card

NSV = Not seen vaccination card
[ = classified as unvaccinated
[ = classified as vaccinated
Vac = vaccinated, 1 = dead.

Lecture 13: Registry data analysis

Ret i dati h
P P ‘& app

In the retrospective updating approach, vaccination status
is used as a time-varying variable changing from unvacci-
nated to vaccinated, on the exact date of vaccination. This
is a standard statistical approach if vaccination informa-
tion is collected for all children, regardless of survival
status. This approach will introduce survival bias if
information is missing on vaccinations given since latest
visit for children who died. This is illustrated in Figure 1a.
For example, if an unvaccinated child is vaccinated
between two visits but dies before the last visit, the
vaccination card will not be seen and the child continues to
be classified as unvaccinated (Figure 1a, child 4). However,
if the child survives the vaccination status and is updated
on the date of vaccination and the follow-up time, as
vaccinated children will be moved to the new vaccination
category (Figure 1a, child 3). This latter follow-up time is
sometimes referred to as immortal person-time, because
children are not at risk of dying in the analysis between
date of vaccination and date of visit (Rothman & Green-
land 1998). Hence, survival bias places immortal person-
time in the vaccinated group. Survival bias is a differential
misclassification, as the classification as vaccinated depends
on the survival of the child.

Conclusion
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