
Practicals - Cox regression
Epidemiological methods in medical research 2023

2 March 2023

Exercise 1: The Bissau study
In rural Guinea-Bissau, 5274 children under 7 months of age were visited two times
at home, with an interval of approximately 6 months. Information about vaccina-
tion (BCG, DTP, measles vaccine) was collected at each visit and at second visit,
death during follow-up was registered. Other children move away during follow-up
or survive until the second visit (’censored’). The dataset bissau.txt contain the
available information:

bissau <- read.table("https://bozenne.github.io/doc/Teaching/bissau.txt",
header=TRUE)

str(bissau)

’data.frame’: 5274 obs. of 8 variables:
$ id : int 1 2 3 4 5 6 7 8 9 10 ...
$ fuptime : int 65 161 166 166 161 161 166 166 166 166 ...
$ fupstatus: chr "dead" "censored" "censored" "censored" ...
$ bcg : chr "yes" "yes" "no" "yes" ...
$ dtp : int 1 2 0 0 0 0 2 1 2 2 ...
$ age : int 182 125 69 96 131 26 129 90 119 146 ...
$ agem : int 5 4 2 3 4 0 4 2 3 4 ...
$ dtpany : logi TRUE TRUE FALSE FALSE FALSE FALSE ...

The relevant varia bles for this practical are:
- id : child id.
- fuptime : follow-up time in days.
- fupstatus : survival indicator at end of follow-up
- bcg : whether the child received a BCG vaccine at baseline
- agem : age at first visit in (whole) months.
- dtpany whether the child received at least 1 dose of DTP vaccine

at baseline
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0. Recap’
We already analyzed this dataset in Practical 1, where we looked at the 6
months risk of death. This was performed aggregating the data into tables:
table(bcg = bissau$bcg, stats = bissau$fupstatus)

stats
bcg censored dead

no 1876 97
yes 3176 125

What was the main issue with this approch?
Would a logistic model handle this issue better?
What aspect of the treatment effect, disregarded so far, will we be able to
visualize/investigate?
Hint: you can have a look to the survival curves on the next page.

In this practical we will use time to event models (e.g. Kaplan-Meier, Cox) to
assess the vaccine effect.

1. Kaplan-Meier
Denote ti the (ordered) times where one or more child died,

di the number of deaths that occured at ti,
Y (ti) the number of children at risk at ti,

then the Kaplan Meier estimator is defined by:

S(t) =
∏
ti≤t

(
1 − di

Y (ti)

)
(1)

We can use this estimator to visualize the survival in each BCG vaccine group:
library(survival)
e.KM <- survfit(Surv(fuptime, fupstatus=="dead") ∼ bcg, data = bissau)
# default plot method
plot(e.KM, conf.int=TRUE, ylim=c(0.9,1.0))
lines(e.KM,lwd=3)
# alternative plot method
library(survminer)
gg <- ggsurvplot(e.KM, conf.int = TRUE)$plot
gg + coord_cartesian(ylim = c(0.94,1))
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a) Will you be able to conclude about the (causal) effect of the vaccine by comparing
the survival between groups? If not, what would be the use of such a graphical
representation.

b) To illustrate what the Kaplan Meier estimator does, we will apply formula (1)
for estimating the survival of the non-vaccinated individuals.
We first re-order the dataset by increasing follow-up time.
We then compute the number at risk (i.e. not dead and still in the study) by
counting, for each follow-up time t, the number of individuals whose follow-up
time is equal or greater than t:

## select vaccinated individuals (and only relevant columns)
bissau.no <- bissau[bissau$bcg == "no",c("id","fuptime","fupstatus")]
## reorder
bissau.no <- bissau.no[order(bissau.no$fuptime),]
## define number at risk
bissau.no$atRisk <- sapply(bissau.no$fuptime,

FUN = function(t){ sum(bissau.no$fuptime>=t) })
## display
head(bissau.no)

id fuptime fupstatus atRisk
2645 2645 6 censored 1973
1415 1415 8 dead 1972
1739 1739 9 censored 1971
3364 3364 9 dead 1971
3817 3817 12 censored 1969
266 266 13 dead 1968
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Try to compute ("by hand") the survival at time 0,6,8,9,12 days and compare it
to the Kaplan-Meier estimate.

print(summary(e.KM, times = c(0,6,8,9,12)), digit = 7)

[...]
bcg=no

time n.risk n.event survival std.err lower 95% CI upper 95% CI
0 1973 0 1.0000000 0.0000000000 1.0000000 1
6 1973 0 1.0000000 0.0000000000 1.0000000 1
8 1972 1 0.9994929 0.0005069708 0.9984997 1
9 1971 1 0.9989858 0.0007167831 0.9975819 1

12 1969 0 0.9989858 0.0007167831 0.9975819 1

[...]

We now would like to estimate the vaccine effect under the assumption that age (in
months) is the only confounder.

2. More Kaplan-Meier
A first approach would to use the previous approach within each age group. Is
it easy to conclude about the vaccine effect? Discuss the strength/limitations
of this approach.
(keep in mind that the confidence intervals, displayed below as a shaded area,
are not adjusted for multiple comparisons across time nor across age groups).

e.KMagem <- survfit(Surv(fuptime, fupstatus=="dead") ∼ bcg + agem,
data = bissau)

ggsurvplot_facet(e.KMagem, facet.by = "agem", conf.int = TRUE,
data = bissau, nrow = 2)
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## number of individuals per age and vaccine group
table(bcg = bissau$bcg, agem = bissau$agem)

agem
bcg 0 1 2 3 4 5 6

no 637 421 321 218 178 141 57
yes 237 468 598 589 581 554 274
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3. Cox model (single exposure)
Another approach is to fit a Cox regression model using age and vaccine as
covariates. The Cox model decomposes the instantaneous risk of death, called
hazard and denoted λ(t) = λ0(t) exp(Xβ), into two terms:

• the baseline hazard λ0(t) which represent the influence of time.
• the linear predictor Xβ which represent the influence of the covariates X

(β represents the effect of those covariates, on the log hazard scale).

The survival can then be computed as S(t) = exp(−Λ0(t) exp(Xβ)) where
Λ0(t) =

∫ t
s=0 λ0(s)ds, the baseline cumulative hazard, can be understood as

sum of the hazard over time in the reference group (no covariate effect).

e.coxTime <- coxph(
Surv( fuptime, fupstatus == "dead") ∼ factor(agem) + bcg,
data = bissau, x = TRUE )

summary(e.coxTime)

Call:
coxph(formula = Surv(fuptime, fupstatus == "dead") ~ factor(agem) +

bcg, data = bissau, x = TRUE)

n= 5274, number of events= 222

coef exp(coef) se(coef) z Pr(>|z|)
factor(agem)1 0.11500 1.12187 0.23205 0.496 0.6202
factor(agem)2 -0.25687 0.77347 0.25861 -0.993 0.3206
factor(agem)3 0.19894 1.22011 0.24325 0.818 0.4135
factor(agem)4 0.33252 1.39447 0.24183 1.375 0.1691
factor(agem)5 0.33066 1.39189 0.24957 1.325 0.1852
factor(agem)6 -0.01052 0.98953 0.35340 -0.030 0.9762
bcgyes -0.34720 0.70667 0.14605 -2.377 0.0174 *
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

exp(coef) exp(-coef) lower .95 upper .95
factor(agem)1 1.1219 0.8914 0.7119 1.7679
factor(agem)2 0.7735 1.2929 0.4659 1.2840
factor(agem)3 1.2201 0.8196 0.7574 1.9654
factor(agem)4 1.3945 0.7171 0.8681 2.2401
factor(agem)5 1.3919 0.7184 0.8534 2.2701
factor(agem)6 0.9895 1.0106 0.4950 1.9781
bcgyes 0.7067 1.4151 0.5308 0.9409

a) Under this Cox model, what can you say about the vaccine effect?

6



b) What assumptions are we making compared to the Kaplan Meier approach?
If you are in doubt you can have a look to the modeled survival curves (see
appendix A) and compare them to the Kaplan Meier curves.

c) The cumulative baseline hazard can also be estimated from the Cox model (see
figure below). What does it mean that the cumulative hazard is approximately
linear?

library(riskRegression)
e.cumhaz <- predictCox(e.coxTime)
df.cumhaz <- data.frame(time = e.cumhaz$time,

cumhazard = e.cumhaz$cumhazard)
df.cumhaz[c(1:5,48,81,82),]

time cumhazard
1 2 0.0000000000
2 4 0.0000000000
3 5 0.0000000000
4 6 0.0002081311
5 8 0.0004163482
48 60 0.0142977094
81 99 0.0260653240
82 101 0.0267120847

library(ggplot2)
autoplot(e.cumhaz, type = "cumhaz")
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d) Compare the results of the Cox model with the ones of the Poisson regression.
Is it surprising?

e.glmBCG <- glm(fupstatus=="dead" ∼ bcg + factor(agem),
offset = log(fuptime), family = poisson, data = bissau)

Epi::ci.exp(e.glmBCG)

exp(Est.) 2.5% 97.5%
(Intercept) 0.000277131 0.0001996611 0.0003846598
bcgyes 0.708006220 0.5317786614 0.9426343033
factor(agem)1 1.122316129 0.7121835942 1.7686359301
factor(agem)2 0.774247396 0.4664012673 1.2852860232
factor(agem)3 1.219971430 0.7573584948 1.9651595631
factor(agem)4 1.393708253 0.8676134569 2.2388111647
factor(agem)5 1.390276273 0.8524477945 2.2674328298
factor(agem)6 0.984781408 0.4927412072 1.9681617996

e) [advanced] Based one the cumulative baseline hazard and the estimate coeffi-
cients, we you "manually" compute the survival that is displayed in appendix
A. What would be survival probability at 60 days of a 2-month old child that
was not vaccinated. At 100 days? Repeated the calculations for a vaccinated
child.

predictCox(e.coxTime, time = c(60,100),
newdata = data.frame(bcg = c("no","yes"), agem = "2"),
keep.newdata = TRUE)

observation agem bcg times cumhazard survival
1: 1 2 no 60 0.01106 0.989
2: 2 2 yes 60 0.00781 0.992
3: 1 2 no 100 0.02016 0.980
4: 2 2 yes 100 0.01425 0.986
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4. Cox models (two exposures) We would like now to study the effect of dtpany
and bcg.

a) We first consider a Cox model with only additive effects. What is the
interpretation of the bcg and dtpany coefficients?

e.coxTime2 <- coxph(
Surv( fuptime, fupstatus == "dead") ∼ factor(agem) + bcg + dtpany,
data = bissau )

summary(e.coxTime2)

[...]
coef exp(coef) se(coef) z Pr(>|z|)

bcgyes -0.5525 0.5755 0.1944 -2.842 0.00448 **
dtpanyTRUE 0.3689 1.4461 0.2165 1.704 0.08838 .

exp(coef) exp(-coef) lower .95 upper .95
bcgyes 0.5755 1.7376 0.3932 0.8424
dtpanyTRUE 1.4461 0.6915 0.9461 2.2103

[...]

b) We now consider a Cox model with an interaction between the two vaccines.
What is the interpretation of the bcg, dtpany, and bcg:dtpany coefficients?
The tables in appendix B may be helpful to understand the parametrisation of
the model.

e.coxTime3 <- coxph(
Surv( fuptime, fupstatus == "dead") ∼ factor(agem) + bcg * dtpany,
data = bissau )

summary(e.coxTime3)

[...]
coef exp(coef) se(coef) z Pr(>|z|)

bcgyes -0.56991 0.56557 0.20445 -2.788 0.00531 **
dtpanyTRUE 0.17430 1.19041 0.72170 0.242 0.80916
bcgyes:dtpanyTRUE 0.21183 1.23594 0.74364 0.285 0.77576

exp(coef) exp(-coef) lower .95 upper .95
bcgyes 0.5656 1.7681 0.3788 0.8443
dtpanyTRUE 1.1904 0.8400 0.2893 4.8979
bcgyes:dtpanyTRUE 1.2359 0.8091 0.2877 5.3086
[...]
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c) In the model with interactions, how would you test whether there is evidence for
a combined effect of the two vaccines greater (or worse) than sum of the effects
of each vaccine when used alone?
How would you test whether there is an effect of any vaccine?
How would you test whether there is an effect of bcg?

library(multcomp)
e.glht <- glht(e.coxTime3,

linfct = c("bcgyes=0",
"dtpanyTRUE=0",
"bcgyes+dtpanyTRUE+bcgyes:dtpanyTRUE=0"))

summary(e.glht)

Linear Hypotheses:
Estimate Std. Error z value Pr(>|z|)

bcgyes == 0 -0.5699 0.2044 -2.788 0.0157 *
dtpanyTRUE == 0 0.1743 0.7217 0.242 0.9926
bcgyes + dtpanyTRUE + bcgyes:dtpanyTRUE == 0 -0.1838 0.1747 -1.052 0.6362
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Adjusted p values reported -- single-step method)

e.glht2 <- glht(e.coxTime3,
linfct = c("bcgyes=0",

"bcgyes+bcgyes:dtpanyTRUE=0"))
summary(e.glht2)

Linear Hypotheses:
Estimate Std. Error z value Pr(>|z|)

bcgyes == 0 -0.5699 0.2044 -2.788 0.0106 *
bcgyes + bcgyes:dtpanyTRUE == 0 -0.3581 0.7150 -0.501 0.8529
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
(Adjusted p values reported -- single-step method)
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5. PH assumption

a) We can test the proportional hazard (PH) assumption using scaled Schoen-
feld residuals1 The null hypothesis is that the PH assumption holds for
each covariate (or globally). How would you interpret a rejection of the
PH assumption for the vaccine effect? Would that "complicates" how the
vaccine effect should be reported?

cox.zph(e.coxTime)

chisq df p
factor(agem) 7.3 6 0.294
bcg 4.9 1 0.027
GLOBAL 11.2 7 0.130

b) [advanced] A non-parametric estimator of the vaccine effect over time (see ap-
pendix C) suggests a change in the vaccination effect after 75 days. What can
you conclude about the vaccination effect?

bissau$bcg.num <- bissau$bcg=="yes"
e.coxTime.bis <- coxph(

Surv( fuptime, fupstatus == "dead") ∼ factor(agem) + bcg.num + tt(bcg.
num),
tt = function(x, t,...) x*(t > 75),
data = bissau)

summary(e.coxTime.bis)

[...]
coef exp(coef) se(coef) z Pr(>|z|)

bcg.numTRUE -0.790783 0.453490 0.220106 -3.593 0.000327 ***
tt(bcg.num) 0.752570 2.122447 0.279306 2.694 0.007051 **
---

exp(coef) exp(-coef) lower .95 upper .95
bcg.numTRUE 0.4535 2.2051 0.2946 0.6981
tt(bcg.num) 2.1224 0.4712 1.2277 3.6693

[...]

1what are those residuals and why they can be used to test the PH is out of the scope of this
exercise.
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6. Choice of the time scale
Instead of using the follow-up time, we could use age to define the time scale
when fitting the Cox model. Compare the estimated effects with the ones of
question 4 (e.coxTime2).

bissau$outage <- bissau$age + bissau$fuptime
e.coxAge <- coxph(

Surv(age, outage, fupstatus == "dead") ∼ bcg * dtpany,
data = bissau)

summary(e.coxAge)

[...]
coef exp(coef) se(coef) z Pr(>|z|)

bcgyes -0.5763 0.5620 0.2023 -2.848 0.0044 **
dtpanyTRUE 0.1273 1.1357 0.7178 0.177 0.8592
bcgyes:dtpanyTRUE 0.2200 1.2461 0.7429 0.296 0.7671

exp(coef) exp(-coef) lower .95 upper .95
bcgyes 0.562 1.7795 0.3780 0.8355
dtpanyTRUE 1.136 0.8805 0.2782 4.6370
bcgyes:dtpanyTRUE 1.246 0.8025 0.2905 5.3447
[...]
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Exercise 2: IHD data from Clayton & Hills
The study is described by Clayton & Hills, Ch. 13. The dataset diet.txt contains
one record for each of the 337 subjects in the data set (and variable names in the
first record). Note that energy intake is given as a quantitative variable. The data
set has the following variables:

id Person id
doe Date of entry (format: MM/DD/YYYY)
dox Date of exit (format: MM/DD/YYYY)
chd Coronary Heart Disease status at exit: 0-no, 1-yes
dob Date of birth (format: MM/DD/YYYY)
job Not used
month Not used
energy Daily energy intake (Mcal)
height Height (cm)
weight Weight (kg)
fat Daily fat intake (g)
fibre Daily fibre intake (g)

1. Read the individual diet data records from the file (SAS users may use the
program ihdindiv.sas) and create variables for age at entry by subtracting
date of birth from date of entry and for the person-years by subtracting date
of entry from date of exit. Also create a variable with the log(person-years).

2. Use chd as outcome variable in a Poisson regression model with the log(person-
years) as offset, using energy as a linear explanatory variable and adjusting
for age at entry as a linear variable. Is there an effect of energy on mortality?

3. Does this change if the effect of age at entry is modeled using a linear spline?

4. Is there any evidence of a non-linear effect of energy, when using linear splines
with knots at say 2, 2.5 and 3? (these numbers are approximately the quartiles
in the energy-distribution).

Extra questions to be used if time permits:

5. The Poisson models you just fitted implicitly assume that the rates of CHD
are constant over time. Try to relax this assumption by fitting the Cox model
corresponding to question 2, with time since study entry (i.e., person-years) as
time variable. Do the regresssion parameters change much?

6. Try to use current age as underlying time variable in the Cox model instead.
Does the exposure effect change much?
Hint: You must compute age at exit and use this plus age at entry when fitting
the Cox model.
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Appendix A: Display of the survival curves in a
Cox model

We first load a few packages
library(riskRegression) ## ease extraction of the survival values
library(colorspace) ## work with colors

We then create a dataset containing all possible combinations of age and vaccine
status:
df.grid <- unique(bissau[,c("bcg","agem")])
df.grid <- df.grid[order(df.grid$bcg,df.grid$agem),] ## re-order lines
df.grid

bcg agem
78 no 0
42 no 1
3 no 2
17 no 3
100 no 4

bcg agem
20 no 5
25 no 6
6 yes 0
29 yes 1
8 yes 2

bcg agem
4 yes 3
2 yes 4
1 yes 5
22 yes 6

We call the predictCox function to extract the survival values at each time point
corresponding to each combination of age and vaccine status:
pred.cox <- predictCox(e.coxTime,

newdata = df.grid,
times = sort(unique(bissau$fuptime)),
keep.newdata = TRUE)

pred.cox

observation agem bcg times cumhazard survival
1: 1 0 no 2 0.0000 1.000
2: 2 1 no 2 0.0000 1.000
3: 3 2 no 2 0.0000 1.000
4: 4 3 no 2 0.0000 1.000
5: 5 4 no 2 0.0000 1.000

---
2250: 10 2 yes 183 0.0280 0.972
2251: 11 3 yes 183 0.0441 0.957
2252: 12 4 yes 183 0.0504 0.951
2253: 13 5 yes 183 0.0503 0.951
2254: 14 6 yes 183 0.0358 0.965
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We then display the values either on a single graph:
gg <- autoplot(pred.cox, group.by = "covariate", type = "survival",

size.point = 0, plot = FALSE)$plot
## fix y scale
gg <- gg + coord_cartesian(ylim = c(0.925,1))
## put colors specific to each age group (dark v)
col <- c("red","orange","yellow","green","blue","purple","black")
gg <- gg + scale_colour_manual(values = c(col, lighten(col,0.5)))
## make the caption and axis labels more readable
gg <- gg + guides(color = guide_legend(ncol = 7, byrow = TRUE))
gg <- gg + labs(color = "")
gg <- gg + theme(legend.position = "bottom",

text = element_text(size=11),
axis.title = element_text(size=15))

gg

0.94

0.96

0.98

1.00

0 50 100 150

time

su
rv

iv
al

agem=0 bcg=no agem=1 bcg=no agem=2 bcg=no agem=3 bcg=no agem=4 bcg=no agem=5 bcg=no agem=6 bcg=no

agem=0 bcg=yes agem=1 bcg=yes agem=2 bcg=yes agem=3 bcg=yes agem=4 bcg=yes agem=5 bcg=yes agem=6 bcg=yes

15



or using a graph per age group:
gg + facet_wrap(∼agem, labeller = label_both, nrow = 2)
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Appendix B: Parametrisation of the hazard in
the various Cox models

We give here the expression of the instantaneous hazard λ(t) = λ0(t) exp(Xβ) for
various models.

• e.coxTime: Cox model with an additive age (α1, . . . , α6) and bcg (β) effect

no dtp dtp
agem no bcg bcg no bcg bcg
0 λ0(t) λ0(t) exp(β) λ0(t) λ0(t) exp(β)
1 λ0(t) exp(α1) λ0(t) exp(α1 + β) λ0(t) exp(α1) λ0(t) exp(α1 + β)
... ... ... ... ...
6 λ0(t) exp(α6) λ0(t) exp(α6 + β) λ0(t) exp(α6) λ0(t) exp(α6 + β)

• e.coxTime2: Cox model with an additive age (α1, . . . , α6), bcg (β), and dtp
(γ) effect

no dtp dtp
agem no bcg bcg no bcg bcg
0 λ0(t) λ0(t) exp(β) λ0(t) exp(γ) λ0(t) exp(β + γ)
1 λ0(t) exp(α1) λ0(t) exp(α1 + β) λ0(t) exp(α1 + γ) λ0(t) exp(α1 + β + γ)
... ... ... ... ...
6 λ0(t) exp(α6) λ0(t) exp(α6 + β) λ0(t) exp(α6 + γ) λ0(t) exp(α6 + β + γ)

• e.coxTime3: Cox model with an additive age (α1, . . . , α6), bcg (β), dtp (γ)
effect, and an interaction (δ):

no dtp dtp
agem no bcg bcg no bcg bcg
0 λ0(t) λ0(t) exp(β) λ0(t) exp(γ) λ0(t) exp(β + γ + δ)
1 λ0(t) exp(α1) λ0(t) exp(α1 + β) λ0(t) exp(α1 + γ) λ0(t) exp(α1 + β + γ + δ)
... ... ... ... ...
6 λ0(t) exp(α6) λ0(t) exp(α6 + β) λ0(t) exp(α6 + γ) λ0(t) exp(α6 + β + γ + δ)

Note: the survival S(t) = exp(−Λ0(t) exp(Xβ)) = S0(t)exp(Xβ) is a function of:

- Λ0(t) =
∫ t

0 λ0(s)ds which is the "sum" over time of the instantaneous hazard for
the reference group. It is often called cumulative baseline hazard.

- Xβ which is the sum of all covariate effects (on the log scale, e.g. Xβ = α1 + β).
It is often called linear predictor.
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Appendix C: Cox model with time varying coef-
ficient

We use the timecox function of the timereg package to fit a Cox model with a time
varying bcg coefficient estimated non-parametrically. We force the age effect to be
constant over time using const:
library(timereg)
e.tcoxTime <- timecox(

Surv( fuptime, fupstatus == "dead") ∼ const(factor(agem)) + bcg,
data = bissau, max.time = 150)

We can then display the estimated bcg effect over time:
plot(e.tcoxTime)
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The corresponding Cox model is:

λ(t) = λ0(t) exp (age α + bcg β(t))

and the graph displays the cumulative regression function:

B(t) =
∫ t

0
β(s)ds
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