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Today's topics

� Frequency matched case controls studies

� Individually matched case control studies

� Matched cohort studies

� Cohort sampling

� Case cohort study with binary data
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Logistic regression of BCG study

Table 23.2. Cases of leprosy and controls by age and BCG scar

Leprosy Healthy Odds

cases population ratio

BCG − + − + estimate

Age 0�4 1 1 7593 11719 0.65

Age 5�9 11 14 7143 10184 0.89

Age 10�14 28 22 5611 7561 0.58

Age 15�19 16 28 2208 8117 0.48

Age 20�24 20 19 2438 5588 0.41

Age 25�29 36 11 4356 1625 0.82

Age 30�34 47 6 5245 1234 0.54

Total 159 101 34594 46028 0.48
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ω = odds that a person (in the study) is a case

estimated by case/control ratios:

Table 23.3. Case/control ratio (×103) by age and BCG scar

BCG scar

Age Absent Present OR

0-4 0.13 0.08 0.65

5-9 1.54 1.37 0.89

10-14 4.99 2.91 0.58

15-19 7.25 3.45 0.48

20-24 8.20 3.40 0.41

25-29 8.26 6.77 0.82

30-34 8.96 4.86 0.58

log(ÔR) = −0.547 (SD = 0.141)⇒ ÔR = 0.579 (0.439, 0.763).
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Fewer controls per case

Table 23.6. A simulated study with 1000 controls

Cases Controls

BCG − + − +

Age 0�4 1 1 101 137

5�9 11 14 91 115

10�14 28 22 82 101

15�19 16 28 28 87

20�24 20 19 25 69

25�29 36 11 63 21

30�34 47 6 56 24

Here, the number of controls per case varies considerably with age.

log(ÔR) = −0.548 (SD = 0.161)⇒ ÔR = 0.578 (0.422, 0.792).
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E�ciency of case-control study

In the BCG study there were several controls per case.

If we have a case-control study with m controls per case then the ratio

between the SD for the odds ratio and the SD for a corresponding rate

ratio from a cohort study based on the same cases is

√
1 +

1

m
.

For di�erent values of m this is:

m 1 2 3 4 5 10

Ratio 1.41 1.22 1.15 1.12 1.10 1.05

The ratio does not change much for m ≥ 4− 5.
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Exercise

Calculate the number (m) of controls per case for the `big' and the

`small' study and investigate whether the expression
√
1 + 1/m is

compatible with the ratio between the observed SD's (0.141 and

0.161, respectively).
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Solution

The values of m are, respectively,

mbig = 80622/260 = 310.1 and msmall = 1000/260 = 3.9.

The ratios are

√
1 + 1/msmall/

√
1 + 1/mbig = 1.12 and 0.161/0.141 = 1.14,

quite close!

8



Age matching (group matching)

Fewer controls may be used more e�ciently by matching.

Table 23.6. A simulated four-to-one group-matched study

Cases Controls

BCG − + − +

Age 0�4 1 1 3 5

5�9 11 14 48 52

10�14 28 22 67 133

15�19 16 28 46 130

20�24 20 19 50 106

25�29 36 11 126 62

30�34 47 6 174 38

log(ÔR) = −0.572 (SD = 0.155)⇒ ÔR = 0.564 (0.417, 0.764),

i.e. the SD is (slightly) smaller than without matching.
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Intercept (`Corner')?

We know that if π = risk of failure in the population

then ω = K × π

1− π
where

K =
Prob(a �failure� is included as case)

Prob(a �survivor� is included as control)

Thereby,

log
π

1− π
= Corner + Age + BCG

=⇒ log(ω) = log(K) + Corner + Age + BCG

same odds ratios when K does not depend on Age and BCG.

But the estimated Corner parameter cannot be interpreted.
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Case/control ratios

In the matched study, the factor K does depend on Age!

Absent Present

0-4 0.33 0.20

5-9 0.23 0.27

10-14 0.42 0.17

15-19 0.35 0.22

20-24 0.40 0.18

25-29 0.29 0.18

30-34 0.27 0.16
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Matched and unmatched analysis

Unmatched Age-matched

Parameter Estimate SD Estimate SD

Corner -8.880 0.7093 -1.0670 0.800

Age(1) 2.624 0.7340 -0.0421 0.827

Age(2) 3.583 0.7203 0.0119 0.812

Age(3) 3.824 0.7228 0.0713 0.814

Age(4) 3.900 0.7244 0.0244 0.816

Age(5) 4.156 0.7224 -0.1628 0.814

Age(6) 4.158 0.7213 -0.2380 0.813

BCG(1) -0.547 0.1409 -0.5721 0.155
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In the matched study we should correct for Age though the Age

estimates in the model:

log(ω) = Corner + Age + BCG

cannot be interpreted.

Cases Controls Odds

Stratum + − + − ratio

1 89 11 80 20 2.0

2 67 33 50 50 2.0

3 33 67 20 80 2.0

Total 189 111 150 150 1.7

Table 18.4. Bias due to ignoring matching
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Individual matching in case-control studies

The BCG study provided an example of frequency matching, i.e. when

selecting controls it was assured that cases and controls have the same

distribution of the matching variable (age).

However, a given case did not have his or her `own private' control(s).

That is achieved when using individual matching, that is when

matching is based on a variable like neighborhood, familial relation or

the like (typically variables with many possible values), i.e., not easily

quanti�able in a regression model.

Matching on time (`risk-set sampling' of controls, `nested case-control

study', `incidence density sampling') is also a type of individual

matching (more later).
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Analysis of matched pairs

In the simplest case with a single binary exposure and one control

individually matched to each case, data can be summarized as a

two-by-two table of pairs:

History History of control

of case Positive Negative

Positive a = 26 b = 15

Negative c = 7 d = 37

Table 19.1. Tonsillectomy history in 85 matched pairs of Hodgkin

cases and matched controls. Matched controls are same-sex siblings

within a given age range. Originally: 174 cases and 472 controls.
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Analysis of matched pairs

Each pair gives rise to a stratum and the Mantel-Haenszel methods

apply.

Exp Unexp Exp Unexp Exp Unexp Exp Unexp

Case 1 0 1 0 0 1 0 1

Control 1 0 0 1 1 0 0 1

Only discordant strata, i.e. those where case and control have di�erent

exposure status contribute to estimator and test.

Exercise 19.1 (p.187).

How many strata of each of the four types are there?
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Analysis of matched pairs

The Mantel-Haenszel estimate for the odds ratio for exposure

(tonsillectomy) is simply the ratio

b/c = 15/7 = 2.14

between the numbers of the two di�erent types of discordant pairs.

The SD of the corresponding log(odds ratio) is√
1

b
+

1

c
,

here 0.4577, leading to a 95% con�dence interval for OR from 0.874

5.266.

The Mantel-Haenszel test reduces to McNemar's test:

(b− c)2

b+ c
=

64

22
= 2.91, P = 0.09.
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Ignoring matching

The incorrect analysis corresponding to ignoring matching amounts to

setting up the following 2 by 2 table of case-control status versus

exposure and estimate the odds ratio:

History Positive Negative

Case 41 44

Control 33 52

Exercise 19.4 (p.188).

Argue why the resulting 2 by 2 table has these entries and show that

the resulting odds ratio now becomes 1.47 (= 41·52
44·33 ).

Note that this is closer to 1 (here: smaller) than the M-H estimate

(2.14).
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Individual matching: logistic regression model

If there are n matched case-control sets i = 1, ..., n (e.g., each

consisting of 1 case and 1 matched control) then the model for subject

j in set i is:

log(oddsij) = CORNERi + EXPOSUREij ,

i.e., one CORNER parameter for each set (i) containing the e�ect of

the matching variables.

It turns out that the standard likelihood method does not work for this

logistic regression model because of the many (n) `nuisance

parameters' (CORNERi) that cannot be estimated. Instead, so-called

conditional likelihood (`conditional logistic regression') may be used.
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Individual matching: model

In the simplest case (1 control per case, 1 binary exposure) this

actually gives exactly the same as the M-H analysis but using

conditional logistic regression it is simple to

� include more than 1 control per case

� adjust for confounders that vary within matched sets

Note that variables that are constant within matched sets cannot be

included (their e�ect will be `absorbed' into the CORNERs).

Some times, `individual' matching is performed on factors like sex and

age. This is not really `individual', and the structure with pairs need

not be maintained in the analysis (but sex and age should still be

(correctly!) accounted for).
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Code for conditional logistic regression

In SAS, PROC LOGISTIC may be used via a STRATA command:

PROC LOGISTIC DATA=HODGKIN;

CLASS TONSIL/PARAM=GLM;

MODEL CASE=TONSIL;

STRATA SET;

RUN;

PROC PHREG may also be used for analyzing individually matched

case-control studies but the code is less transparent.

Similarly in R: clogistic function in Epi package or coxph (or

clogit) functions in survival package.

21



Matching: pros and cons

� Classical method to adjust for confounding in case-control studies

� Inability to estimate e�ect of match variables

� May increase e�ciency for exposure e�ect

� Matching variables must be accounted for in analysis

� Risk of `over-matching'

� Frequency matching vs. individual matching
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Matched cohort studies

In a cohort study, the exposed group is frequently `obvious':

� persons with a certain diagnosis

� persons in a certain occupation

� persons taking a certain drug

But how to select an unexposed group for comparison?

1. at random?

2. matched to the exposed on factors like sex and age?

3. matched to the exposed on more individual factors (neighborhood,

familal relationship)?

4. matched to the exposed on propensity score?
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Matched cohort studies

Similar considerations as for matched case-control studies apply

1. at random?

2. matched to the exposed on factors like sex and age?

In these cases, adjustment for confounders will typically be done

by including them in a regression model together with exposure

(note that these are estimable).

3. matched to the exposed on more individual factors (neighborhood,

familal relationship)?

Here, a strati�ed Cox model respecting the individual matching

may be used:

λij(t) = λ0i(t) exp(β1xij1 + ...+ βpxijp)

where each matched set (`stratum', i) has its own baseline hazard

and individuals (j) within matched sets have covariates xij .
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Propensity score

If Z is a binary exposure and X the confounders then the propensity

score is the probability of being exposed:

e(X) = P (Z = 1 | X).

Propensity score was introduced in an important paper by Rosenbaum

and Rubin (1983) and has been used increasingly in recent years - often

for doing causal inference, i.e. trying to analyze observational data to

obtain answers that would otherwise require a randomized study.

The propensity score has an important balancing property:

The confounders X included in e(X) have the same distribution for

exposed (Z = 1) and unexposed (Z = 0) subjects with the same value

of e(X) (`X and Z are independent given e(X)').
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How to analyze propensity-matched cohort data?

Typically, the individual matching is not kept in the analysis.

Rather, for studies with a follow-up time that varies among individuals,

a marginal Cox model is used:

λi(t) = λ0(t) exp(βZi)

because, according to the balancing property of the propensity score,

exposed (Z = 1) and unexposed (Z = 0) individuals have the same

distribution of X.
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Cohort sampling, example 1: The Danish Adoption Register

Register with information on 14427 children adopted away to unrelated

parents between 1924 and 1947. Information on:

� Adoptee (AD)

� Adoptive Mother, Adoptive Father (AM, AF)

� Biological Mother, Biological Father (BM, BF)

That is, name, date of birth, address of adoptive parents, date of

transfer, date of formal adoption, biological and adoptive siblings.

Aim: study relation between (early) cause-speci�c mortality among

� ADoptee and Biological relatives

� ADoptee and Adoptive relatives

and thereby evaluate genetic and environmental e�ects.
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�Old� study: parents

1003 AD's born 1924-26 followed until 1982:

Sørensen, Nielsen, Andersen, Teasdale NEJM (1988).

Status 1982 AD BF BM AF AM

Alive in DK 765 114 367 64 163

Emigrated 75 32 27 4 8

Disappeared 1 4 2 1 0

Not followed 0 146 26 39 7

Dead 119 664 538 852 782

Total 960 960 960 960 960
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�Old� study

Cox regression model with lifetime of AD as outcome and information

on lifetimes of parents coded as explanatory variables: Estimated

hazard ratios (95% c.i.) for �at least 1 parent dead (from relevant

cause) before age 70�. Time=age.

Cause B/A RR c.i.

All B 1.85 1.17-2.92

All A 0.80 0.55-1.16

Natural B 1.49 0.92-2.39

Natural A 0.96 0.65-1.41

Infection B 5.00 1.73-14.4

Infection A 1.00 0.34-2.97

Vascular B 1.92 0.78-4.73

Vascular A 1.50 0.65-3.46

Cancer B 0.87 0.26-2.88

Cancer A 1.49 0.56-3.97
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Cohort sampling, example 2: HPV and cervix cancer in situ

Josefson, Magnusson, Ylitalo, Sørensen, Qwarforth-Tubbin, Andersen,

Melbye, Adami, Gyllensten Lancet, 2000, 355, 2189-93.

� 146889 women screened between 1969 and 1995 in Uppsala

county cervix cancer screening program: (732887 smears taken)

� 478 cases of cervix cancer in situ (CIN) identi�ed through the

Swedish cancer register

� Exposure, HPV-16 viral load, ascertained from smears.
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Possible Cox models for examples

� Adoption example, whole data set: λi(t) = λ0(t) exp(βxi), where

xi = 1, if one of the adoptive parents for adoptee i died before

age a0 (t =age)

� HPV/cervix cancer example: λi(t) = λ0(t) exp(βxi), where xi =

subject i's HPV viral load at time of �rst screening

Estimation in Cox model: maximize Cox's partial log-likelihood:

∑
failures

log

(
θ(for case)∑
Risk set θ

)

where θi = exp(βxi).

At all event times ti we need the covariates xj for all individuals, j, at

risk for an event at ti.
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Cohort sampling

In Example 1 we need to trace all adoptive parents. However,

information before 1968 is not computerized. Similarly for biological

parents

In Example 2 we need data from all �rst smears.

⇒ sampling of the cohort!
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Two types of sampling design

� (1): Nested case-control sampling: at each event time ti, select a

(simple random) sample (of size m) containing i and estimate β

from the partial log-likelihood:∑
failures

log

(
θ(for case)∑

Case-control set θ

)

� (2): Case-cohort sampling: at time 0 select a random sample S
(the �sub-cohort�) (with some sampling fraction q) and estimate β

from the �pseudo� log-likelihood:∑
failures

log

(
θ(for case)∑

Comparison group θ

)

The comparison group is the case plus what is left of S at the

current failure time.
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Cohort with incomplete follow-up
t0 t1

qaqq a
ppp
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Nested case-control study
t0 t1

qda dqddqdd
d

ad
dppp
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Case cohort study
t0 t1

qdaqdqd a
ppp

S

dddd
ddddd

dddd
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Notes on designs
� Nested case-control sampling: other sampling methods than simple random may

require di�erent weighting of the terms

� Nested case-control sampling: a new sample is selected at each failure time ⇒ if

there are several case series then each series requires its own sets of controls

� Case-cohort sampling: the same sub-cohort is used at each failure time

� Case-cohort sampling: in particular, the same sub-cohort may be used for several case

series

� Both designs: only covariates for the �cases� and for the sampled controls are needed

� Both designs: �relatively little� statistical precision is lost

� Both designs: covariate information of �similar quality� must be obtainable for all

subjects no matter case/controls status

� Both designs: absolute risks may be estimated
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Example: HPV and cervix cancer in situ

� 5 (potential) controls selected per case from the calendar time risk

set, matched on time of entry into cohort (= time of �rst smear)

and on age; no matching on number of smears.

� 1 of the 5 controls randomly selected for inclusion. If the selected

control had only one smear then a second control was selected.

(→ 608 controls.)

� Exposure, HPV-16 viral load, ascertained from the 2081/1754

available smears.

Why do a nested case-control study?

� To avoid making cytological analyses of many smears.

� Why match on age? Standard, age is a confounder.

� Why match on time of �rst smear? To make �exposure quality�

similar for cases and controls.
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Results (using �rst smear)

Josefsson et al., Lancet, 2000, 355, 2189-93.

Viral load Cases/controls exp(β)

HPV 16 negative 354/578 1

Below 20 percentile 16/15 1.9 (0.8-4.2)

20-40 percentile 23/7 7.2 (2.7-19.1)

40-60 percentile 28/3 22.8 (5.5-95.0)

60-80 percentile 27/4 18.9 (5.5-64.9)

Above 80 percentile 30/1 59.0 (7.5-462.2)

Total 478/608

Dose-response e�ect of viral load on rate of CIN.

In an accompanying paper (Ylitalo et al., Lancet, 2000, 2194-98),

estimation of absolute risk of CIN was illustrated.
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�New� adoption case-cohort study

All AD's (12301) followed until 1993, also siblings and half-siblings

(both biologic and adoptive).

It is very time consuming to �nd all those individuals in

non-computerized records prior to 1968.

Therefore, case-cohort study:

� all 1403 dead AD's traced (including entire �family�)

� random sub-cohort of 1683 chosen and traced (1480 new)

� analyses similar to the �old� study performed on the case cohort

sample
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Cox regression model with lifetime of AD as outcome and information

on lifetimes of parents coded as explanatory variables: Estimated

hazard ratios (95% c.i.) for �at least 1 parent dead (from relevant

cause) before age 70�. (Petersen, Andersen & Sørensen, Gen. Epi.,

2005.) Time=age.

Cause B/A RR c.i.

All B 1.27 1.08-1.50

All A 0.92 0.80-1.07

Natural B 1.24 1.01-1.52

Natural A 0.88 0.74-1.05

Infection B 1.35 0.80-2.27

Infection A 0.97 0.62-1.51

Vascular B 1.51 1.05-2.17

Vascular A 0.84 0.57-1.23

Cancer B 1.03 0.72-1.49

Cancer A 1.07 0.77-1.48

41



Individually matched vs. nested case-control

The likelihood (Cox's likelihood) for the nested case-control study is

mathematically the same as the conditional likelihood for a 1 : (m− 1)

individually matched case-control design.

This means that the same software packages can be used for both.

However, the results from a nested case-control study should be

interpreted as rate ratios and those from conditional logistic regression

as odds ratios.

This is because time is explicitly involved in nested case-control studies

(sampling from risk sets).
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Computations

For the nested case-control study, standard software may be used. For

the case-cohort study standard software may be used for parts of the

analyses:

� Nested case-control study, SAS: PROC PHREG, PROC LOGISTIC,

similarly in R: use clogistic, coxph, clogit

� Case-cohort study, SAS: construct weighted data set (e.g.,

Langholz and Jiao, (2007, Comp. Stat. and Data Anal.) and use

PHREG; in R: Epi and survival packages may be adapted � also

cchs package
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Cohort with complete follow-up (no censoring)
t0 t1

qq
q

ppp
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Case cohort study for binary data (no censoring)
t0 t1

qq
q

ppp
S
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Analysis of binary case-cohort data

Include all cases (Yi = 1) at t1 and a random sample of the full cohort

at t0.

Let q be the corresponding sampling fraction.

This is the case-cohort design and the random sample is the

sub-cohort.

Consider the relative risk model:

log(P (Yi = 1)) = c+ d1xi1 + · · ·+ dkxik,

i.e., the d-coe�cients are log(relative risks).

These relative risk parameters may be estimated using logistic

regression of an expanded data set, as follows.
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De�ne Si = 1 if subject i has been selected to the sub-cohort, Si = 0

otherwise, and create a new expanded data set with:

� Di = 1 if Yi = 1, Si = 0 (cases outside sub-cohort)

� Di = 0 if Si = 1 (all sub-cohort members)

� and add records with Di = 1 if Yi = 1, Si = 1 (i.e., records for

cases in sub-cohort are `duplicated')

Then, in the expanded data set,

P (Di = 1 | xi) =
P (Yi = 1 | xi)

q + P (Yi = 1 | xi)

=
exp(c− log(q) + d1xi1 + · · ·+ dkxik)

1 + exp(c− log(q) + d1xi1 + · · ·+ dkxik)
.

Use robust SD's (i.e., keep track of duplicated records).

Note that the intercept is `contaminated' by the sampling fraction, q.
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