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Analysis of cohort studies

In cohort studies:

� Subjects are followed over time

� Occurrences of events of interest are observed

� The frequency measure typically used is the rate

λ(t) = P (event in interval (t, t+ dt) | no event before t)/dt

� Data are often analyzed using Poisson regression, e.g.

log(Rate) = Corner + Exposure + Time (∗)

where Time is often categorized age.
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Poisson regression: piecewise constant rate

The time variable (age) is divided into K intervals and the rate in each

of the intervals (λk) is assumed constant (but possibly di�erent among

intervals).

-λ1 λ2 λ3 · · ·
· · ·

λK

c0 = 0 c1 c2 c3 cK−1 cK Age

Thus

λ(t) = λk for t between ck−1 and ck, k = 1, . . . ,K

The intervals need not have the same length.
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Poisson regression: piecewise constant rate

For estimation, we only need to keep record of the total number of

events and the time at risk in each interval.

For example, the diet data split by age bands:

Age band IHD cases P-yrs. at risk

40-49 6 919.8

50-59 17 2149.2

60-69 22 1556.4

4



Typically, we further relate the rate to covariates, e.g. exposure (E=0,

unexposed, E=1, exposed):

-λ11

λ10

λ21

λ20

λ31

λ30

· · ·
· · ·

λK1

λK0

c0 = 0 c1 c2 c3 cK−1 cK Age

� Not part of standard SAS to split the time variable, but

user-written SAS-macros exist.

� R � packages exist (e.g., Epi Package)

More later in the course.

� Often an assumption of no interaction is imposed as in (*):

log(λj1) = log(θE) + log(λj0), j = 1, 2, ...,K
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Poisson regression: piecewise constant rate

For estimation, we need to keep record of the total number of events

and the time at risk in each interval combined with each exposure

group.

Example, the diet data:

Exposed Unxposed

Age band IHD cases P-yrs. at risk IHD cases P-yrs. at risk

40-49 2 311.9 4 607.9

50-59 12 878.1 5 1271.1

60-69 14 667.5 8 888.9

Similarly when there are more (categorical) covariates.
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Survival data

Time (T ) to death (or other event of interest), measured from a

well-de�ned starting time point (time-origin, time=0):

� Time from start of randomized clinical trial to death

� Time from �rst employment to pension

� Time from �lling of a tooth to �lling falls out

In clinical applications, choice of time 0 is often `obvious'

(randomization, diagnosis, start of treatment).

What is special about survival data?

� Censoring: For some, we will only know a period in which the

event was not observed, but not when (and sometimes: if) the

event will happen

Survival data studies are special cases of cohort studies.
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A small data set

Ordered times: 5, 6*, 7 , 8, 9*, 12*, 13, 15, 16, 20*, 22*, 23

* indicates censored observations.
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A small data set

Ordered times: 5, 6*, 7 , 8, 9*, 12*, 13, 15, 16, 20*, 22*, 23

* indicates censored observations.

How to estimate the mean survival time?

5+6+7+8+9+12+13+15+16+20+22+23
12 = 156

12 = 13.0?

5+7+8+13+15+16+23
7 = 87

7 = 12.4?

Which fraction of patients survives past 12 months? 6
12 = 0.5?

Exercise: Why are these estimates biased? And in which direction?

We need methods that are able to account for censoring.

This leads to a focus on other parameters than the mean value.
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Survival and hazard function

Let T be the time (from time 0) to the event of interest:

S(t) = P (T > t)

= probability of survival to time t

λ(t) = rate or hazard

λ(t)dt ≈ P (T ≤ t+ dt | T > t)

= probability of failure before t+ dt given survival beyond t

Relationship (when there are no competing risks):

S(t) = exp
(
−
∫ t

0
λ(s)ds

)
= exp(−Λ(t)).

(Here, Λ(t) is the integrated (or cumulative) hazard function.)

F (t) = 1− S(t) = P (T ≤ t) is the failure risk before time t.
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Malignant melanoma data

In the period 1962-77, 205 patients had their tumor removed and were

followed until 1977. At the end of 1977:

� 57 had died of malignant melanoma (status=1)

� 134 were still alive (status=2)

� 14 had died from other causes (status=3)

Purpose: Study e�ect on survival of sex, age, thickness of tumor,

ulceration, etc. (no treatment factor)

-

1962 1977

• • • •• • • • •
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Malignant melanoma data

id days status sex age year thick ulc

1 10 3 1 76 1972 6.76 1

2 30 3 1 56 1968 0.65 0

3 35 2 1 41 1977 1.34 0

4 99 3 0 71 1968 2.90 0

5 185 1 1 52 1965 12.08 1

6 204 1 1 28 1971 4.84 1

7 210 1 1 77 1972 5.16 1

8 232 3 0 60 1974 3.22 1

9 232 1 1 49 1968 12.88 1

10 279 1 0 68 1971 7.41 1

. . . . . . . .

. . . . . . . .

203 4688 2 0 42 1965 0.48 0

204 4926 2 0 50 1964 2.26 0

205 5565 2 0 41 1962 2.90 0
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Kaplan-Meier survival curves
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How to quantify the di�erence between males and females?
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The Cox Model

The Cox model assumes that the rate for the ith individual is

λi(t) = λ0(t) exp(βxi1)

where

xi1 =

0 if individual i is a female

1 if individual i is a male

That is,

λi(t) =

λ0(t) if individual i is a female

λ0(t) exp(β) if individual i is a male,

so, λ0(t) (the �baseline hazard�) is the hazard rate for females. This is

completely unspeci�ed.

Time t is the chosen time variable, e.g. time since randomization, age,

or (like here) time since operation.
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Hazard ratio

If

λi(t) =

λ0(t) if individual i is a female

λ0(t) exp(β) if individual i is a male

then the rate ratio, RR (or hazard ratio, HR) between males and

females is

RR =
λ0(t) exp(β)

λ0(t)
= exp(β) = θ.

This ratio is independent of time, i.e. we have proportional hazards.

The Cox model is also called the proportional hazards model.

Note that proportional hazards is a modeling assumption that may or

may nor describe the data well.
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Estimation

The parameters: β and the baseline hazard λ0(t), may be estimated

based on the likelihood principle. The maximum likelihood estimate is

denoted β̂.

When deriving the likelihood function (�Cox's partial likelihood�), the

concept of a risk set is crucial. The risk set, R(ti) at death time ti is

the set of individuals being at risk of dying (alive and uncensored) just

before time ti.

In Cox's partial likelihood the covariates for the individual failing are

�compared to� the covariates for patients who could have failed at that

time, i.e. patients from the risk set:

∑
failures

log

(
θ(for case)∑
Risk set θ

)
(with θi = exp(βxi1))
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Risk set (at time t): R(t) = set of subjects who could have been the

case (at time t). Depends on how time is de�ned (age, time on study,

calendar time,...). May induce delayed entry (more later):
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The Cox model

λi(t) = λ0(t) exp(βxi1)

can also be written on log-scale

log(λi(t)) = log(λ0(t) exp(βxi1))

= log(λ0(t)) + βxi1.

In `Clayton-Hills notation':

log(Rate) = Corner(Time) + x1.

Compare with the Poisson regression model: later!

For the melanoma data, we get β̂ = 0.656,SD = 0.238, i.e., the

hazard ratio is exp(0.656) = 1.93 with 95% con�dence limits from

1.93/ exp(1.96 · 0.238) = 1.21 to 1.93× exp(1.96 · 0.238) = 3.07.
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The Cox model in SAS and R

In SAS, proc phreg can be used for estimation in the Cox model.

proc phreg data=melanom;

class sex (ref="0");

model days*status(2) = sex / rl;

run;

/* The ’rl’ option (or ’risklimits’) adds confidence limits

for hazard ratios to the output */
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Part of output from proc phreg:

.

.

.

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard 95% Hazard Ratio

Parameter DF Estimate Error Chi-Square Pr > ChiSq Ratio Confidence Limits

sex 1 1 0.65586 0.23761 7.6190 0.0058 1.927 1.209 3.070

The column Parameter Estimate is β̂.
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mel <-

read.table("melanom-surv.txt", header = TRUE)

library(survival)

fit <- coxph(Surv(days, status != 2) ~ factor(sex), data = mel)

summary(fit)

Call:

coxph(formula = Surv(days, status != 2) ~ factor(sex), data = mel)

coef exp(coef) se(coef) z Pr(>|z|)

factor(sex)1 0.6559 1.9269 0.2376 2.761 0.00577 **

exp(coef) exp(-coef) lower .95 upper .95

factor(sex)1 1.927 0.519 1.21 3.07
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Adjustment for confounding

Add covariates xi2, . . . , xip to the model including only `exposure' xi1:

λi(t) = λ0(t) exp(β1xi1 + β2xi2 + · · ·+ βpxip), resp.

log(Rate) = Corner(Time) + x1 + x2 + · · ·+ xp.

The Cox model assumes that:

1. the hazards for all individuals are proportional,

2. the e�ects of covariates are additive and linear on the log rate

scale, (the `linear predictor')

Items 1. and 2. should be checked as part of the data analysis.
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Results for melanoma data

Adding age (per 10 years), ulceration (yes vs. no), and tumor

thickness (in mm) to the model including sex, we get the results

Covariate β̂ SD HR

Sex 0.413 0.240 1.51

Age 0.218 0.078 1.24

Ulceration 0.952 0.268 2.59

Thickness 0.099 0.035 1.10

Note the reduced log(hazard ratio) for sex after adjusting for

(primarily) thickness.

Exercise: Calculate a 95% con�dence interval for HR for sex.

Solution: From

exp(0.413− 1.96 · 0.240) = 0.94 to exp(0.413 + 1.96 · 0.240) = 2.42.

23



Checking model assumptions

Linearity or interactions may be tested as for other models with a

linear predictor, e.g. using splines to test linearity.

Proportional hazards may be checked by adding interactions with time

- this is possible in both SAS and R.

There are many other ways of checking the assumptions, including

some based on cumulative martingale residuals or cumulative score

(`Schoenfeld') residuals.

These methods are available in SAS PROC PHREG via the ASSESS

statements. In R, the method is implemented in various packages, e.g.

timereg.
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What to do if proportional hazards fail?

Then, in principle, the model is incorrect and results should be

interpreted with caution.

In a classical `exposure-confounder' situation, if proportional hazards

fail for a confounder then sensitivity analyses may be a way forward:

Estimate the exposure e�ect with and without allowing

non-proportional hazards for the confounder and compare. The Cox

model tends to be remarkably robust towards this kind of model

mis-speci�cation!

If the assumption fails for the exposure then a single hazard ratio is

misleading and something like survival curves could be presented

instead of a single parameter. This does complicate matters!
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Independent censoring

The Cox model (and other methods for survival data, including

Kaplan-Meier) rely on an assumption of independent censoring.

This means that individuals censored at any given time t should not be

a biased sample of those who are at risk at time t.

Stated in other words: the hazard λ(t) gives the event rate at time t,

i.e. the failure rate given that the subject is still alive (T > t).

Independent censoring then means that the extra information that the

subject is not only alive, but also uncensored at time t does not

change the failure rate.
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Choice of time variable

A study is conducted over calendar time but the natural time variable

may be time since treatment, e.g. the melanoma study.

Cohort studies are often conducted by recruiting a random sample of

the population at the start of the study and then these subjects are

followed for a number of years.

In such a study, age may be a more natural time variable than time on

study.
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Vaccinations in Guinea-Bissau 1990-96

Rural Guinea-Bissau: 5274 children under 7 months of age were visited

two times at home, with an interval of ≈ six months. Information

about vaccination (BCG, DTP, measles vaccine) was collected at each

visit, and at second visit death during follow-up was registered.

Children were censored if they moved away during follow-up or

survived until second visit.

Variables in the Bissau data set (bissau.txt):
id Child id

fuptime Follow-up time in days

dead 0 = censored, 1 = dead

bcg 1 = Yes, 2 = No

dtp Number of doses of DTP (0, 1, 2 or 3)

age Age at �rst visit in days

agem Age at �rst visit in (whole) months

5275 lines, �rst line contains variable names.
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Is the risk of dying associated with vaccination?

Outcome

Exposure Died Survived Total

BCG vaccinated 125 (3.8%) 3176 3301

not BCG vaccinated 97 (4.9%) 1876 1973

Total 222 (4.2%) 5052 5274

Risk ratio, RR = 0.77, odds ratio OR = 0.76.

NB: This table (and the RR and OR estimates) ignore the varying

follow-up times among children.
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proc phreg data=bissau;

class bcg;

model fuptime*dead(0)=bcg / rl ;

run;

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 4.2824 1 0.0385

Score 4.3761 1 0.0364

Wald 4.3474 1 0.0371

Type 3 Tests

Wald

Effect DF Chi-Square Pr > ChiSq

bcg 1 4.3474 0.0371

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard 95% Hazard Ratio

Parameter DF Estimate Error Chi-Square Pr > ChiSq Ratio Confidence Limits

bcg 1 1 -0.28214 0.13532 4.3474 0.0371 0.754 0.578 0.983
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proc phreg data=bissau;

class bcg agem;

model fuptime*dead(0)=bcg agem / rl ;

run;

Type 3 Tests

Wald

Effect DF Chi-Square Pr > ChiSq

bcg 1 5.6510 0.0174

agem 6 7.7246 0.2590

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard 95% Hazard Ratio

Parameter DF Estimate Error Chi-Square Pr > ChiSq Ratio Confidence Limits

bcg 1 1 -0.34720 0.14605 5.6510 0.0174 0.707 0.531 0.941

agem 0 1 0.01053 0.35339 0.0009 0.9762 1.011 0.506 2.020

agem 1 1 0.12553 0.34494 0.1324 0.7159 1.134 0.577 2.229

agem 2 1 -0.24631 0.35903 0.4707 0.4927 0.782 0.387 1.580

agem 3 1 0.20946 0.34502 0.3686 0.5438 1.233 0.627 2.425

agem 4 1 0.34300 0.34265 1.0020 0.3168 1.409 0.720 2.758

agem 5 1 0.34118 0.34699 0.9668 0.3255 1.407 0.713 2.777
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Age as time variable: Delayed entry (small data set)

●

Time in study

Times (months)

In
di

vi
du

al

0 5 10 15 20 25

1

2

3

4

5

6

7

8

9

10

11

12

●

●

●

●

●

●

●

●

●

●

●

●

Age as time

Age (months)

In
di

vi
du

al

0 5 10 15 20 25

1

2

3

4

5

6

7

8

9

10

11

12

●

●

●

●

●

●

●

●

●

●

●

32



Subjects are only at risk from the age at entry and onwards: Had they

died before the age of entry, we would not have observed that.

Handling delayed entry is quite easily done by careful control of the

risk set R(ti) at death time ti.

data bissau2;

set bissau;

outage=age+fuptime; /* age is in days */

run;

proc phreg data=bissau2;

class bcg;

model (age,outage)*dead(0)= bcg / rl;

/* Alternatively: model outage*dead(0)= bcg / rl, entry = age */;

run;

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard 95% Hazard Ratio

Parameter DF Estimate Error Chi-Square Pr > ChiSq Ratio Confidence Limits

bcg 1 1 -0.35542 0.14065 6.3854 0.0115 0.701 0.532 0.923

33



R code and (edited) output

# load data

bissau <- read.table("bissau.txt", header = TRUE)

library(survival)

fit <- coxph(Surv(fuptime, dead != 0) ~ (bcg == 1) + factor(agem), data = bissau)

summary(fit)

bissau$outage <- bissau$age + bissau$fuptime

fitage <- coxph(Surv(age,outage, dead != 0) ~ (bcg == 1), data = bissau)

summary(fitage)

Call:

coxph(formula = Surv(age, outage, dead != 0) ~ (bcg == 1), data = bissau)

coef exp(coef) se(coef) z Pr(>|z|)

bcg == 1TRUE -0.3552 0.7011 0.1407 -2.525 0.0116 *

exp(coef) exp(-coef) lower .95 upper .95

bcg == 1TRUE 0.7011 1.426 0.5321 0.9236
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Comparison of Poisson and Cox models
(alternative) diet data

Poisson

Parameter Estimate SD W

Exposure (1) 0.622 0.303 4.22

Age (1) 0.204 0.472 0.19

Age (2) 0.747 0.461 2.62

Cox

Parameter Estimate (β̂) SD W

Exposure (1) 0.611 0.303 4.08
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Estimation of (cumulative) baseline hazard

In addition, the Cox model contains the baseline rate (the e�ect of

age) which may, optionally, be estimated (or rather the cumulative

baseline rate) and presented graphically, the so-called `Breslow'

estimator.
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Diet data: estimated cumulative baseline hazard
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Results for melanoma data (K = 3 intervals)

Cox Poisson

Covariate β̂ SD β̂ SD

Sex 0.413 0.240 0.396 0.240

Age 0.218 0.078 0.222 0.076

Ulceration 0.952 0.268 0.960 0.269

Thickness 0.099 0.035 0.096 0.035

The Poisson model, additionally, provides estimates for the baseline

hazard in each interval (0-2.5, 2.5-5, 5+ years).

For the Cox model, as above, the (cumulative) baseline hazard may be

extracted from the output and plotted.

Note again the similarity between the two sets of estimates.
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Baseline hazards

Poisson baseline rates: 0-2.5 years 614, 2.5-5 years 719, 5years- 699

per 100000 years.
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Bissau data: Cox, Poisson, or logistic regression?

Analysing Guinea-Bissau data using three di�erent regression models

all adjusting for age in months as a categorical variable. In the Cox

model, follow-up time was used as the time variable. In the Poisson

model, the follow-up time was used as time at risk. The logistic

regression did not take the follow-up time into account.

Cox RR (95%CI) Poisson RR (95%CI) Logistic OR (95%CI)

0.71 (0.53-0.94) 0.71 (0.53-0.94) 0.71 (0.53-0.96)

Follow-up time does not seem important.

OR and RR are close since the mortality rate is (rather) low.
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Cox or Poisson?

Items to consider:

� sample size: Cox needs individual records, Poisson can use

tabulated data (for categorical covariates)

� parametric/non-parametric time e�ects; �strong� e�ects

� which e�ects are of interest?

� Choice of �basic� time scale: only for Cox

� Poisson can handle several time variables `in parallel'

� Examination of proportional hazards

Take-home message:

Cox and Poisson tend to give very similar results
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