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Exercise 1: The BCG study revisited
We will revisit the BCG study (exercise 2 of the previous practical) where we are
interested in comparing the risk of leprosy between the BCG vaccinated and non
BCG vaccinated subjects:

• subjects were grouped into 7 age intervals: 0-4, 5-9, 10-14, 15-19, 20-24, 25-29,
30-34 (in years) and we would like to adjust for age since it may confound the
association between vaccination and leprosy.

• the non-vaccinated group will be composed of the whole population survey of
80,622 persons (conall in the dataset).

The purpose of this exercise is to compare 3 different approaches to quantify
the vaccine effect and discuss the underlying statistical models. To focus on these
objectives the code and software output is provided.

Here is a summary of the dataset:
bcg <- read.table("https://bozenne.github.io/doc/Teaching/bcg.txt",

header = TRUE)
bcg$age <- as.character(bcg$age)
bcg$status <- as.character(bcg$status)
bcg.r <- bcg[bcg$status %in% c("case","conall"),]

table227 <- xtabs(n∼scar+status+age, data = bcg.r)
ftable(table227)

age 00_04 05_09 10_14 15_19 20_24 25_29 30_34
scar status
0 case 1 11 28 16 20 36 47

conall 7593 7143 5611 2208 2438 4356 5245
1 case 1 14 22 28 19 11 6

conall 11719 10184 7561 8117 5588 1625 1234
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Part I
A simple approach consists in evaluating the probability of contracting leprosy in each
age and vaccination subgroup, and comparing them between vaccination subgroups.

1. Can you make sense of the following software output?
Does it help to answer the research question?

table227.pc <- prop.table(table227, margin = c(1,3))
ftable(round(100*table227.pc,3))

age 00_04 05_09 10_14 15_19 20_24 25_29 30_34
scar status
0 case 0.013 0.154 0.497 0.719 0.814 0.820 0.888

conall 99.987 99.846 99.503 99.281 99.186 99.180 99.112
1 case 0.009 0.137 0.290 0.344 0.339 0.672 0.484

conall 99.991 99.863 99.710 99.656 99.661 99.328 99.516

[1] "00_04" "05_09" "10_14" "15_19" "20_24" "25_29" "30_34"

2. Here is some more complicated code.
Can you understand what it is doing? (appendix A should help)
Does it help to answer the research question?

age.groups <- dimnames(table227.pc)$age
age.groups

[1] "00_04" "05_09" "10_14" "15_19" "20_24" "25_29" "30_34"

library(exact2x2)
df.resI <- NULL
for(iAge in age.groups){

iTab <- table227[,,iAge]
iTest <- binomMeld.test(x1 = iTab["0","case"], n1 = sum(iTab["0",]),

x2 = iTab["1","case"], n2 = sum(iTab["1",]),
parmtype = "difference", conf.int = TRUE)

df.resI <- rbind(df.resI,
data.frame(age = iAge,

estimate = unname(iTest$estimate),
lower = iTest$conf.int[1],
upper = iTest$conf.int[2],
p.value = iTest$p.value)

)
}
df.resI
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age estimate lower upper p.value
1 00_04 -4.635868e-05 -0.000685681 0.0003805052 1.00000000
2 05_09 -1.647831e-04 -0.001577776 0.0010614538 0.92819700
3 10_14 -2.064193e-03 -0.004522346 0.0002342452 0.07826868
4 15_19 -3.756553e-03 -0.008367311 -0.0002525178 0.03326422
5 20_24 -4.748075e-03 -0.009414869 -0.0009798127 0.01037704
6 25_29 -1.473005e-03 -0.006202971 0.0044151797 0.69509953
7 30_34 -4.042621e-03 -0.008441027 0.0021433379 0.20074780

3. Here is the output from the same code as before except that the argument
parmtype has been changed to "ratio".
Does it change your appreciation of the vaccine efficacy?
What property of the testing procedure do you notice?

age estimate lower upper p.value
1 00_04 0.6479522 0.00827165 50.8580868 1.00000000
2 05_09 0.8928310 0.37676901 2.1720971 0.92819700
3 10_14 0.5842863 0.31889878 1.0578105 0.07826868
4 15_19 0.4778392 0.25028232 0.9440460 0.03326422
5 20_24 0.4164616 0.21071034 0.8206767 0.01037704
6 25_29 0.8202934 0.37734768 1.6425565 0.69509953
7 30_34 0.5448181 0.19061559 1.2730218 0.20074780

[Extra] Can you have perform a similar analysis with the glm function?
(appendix A should help). What is the drawback of using glm?
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Part II
A common analysis is to make a logistic model, using age as a covariate:
e.common <- glm(status=="case" ∼ age + scar,

family = binomial(link="logit"),
weight = n,
data = bcg.r)

summary(e.common)

Estimate Pr(>|z|)
(Intercept) -8.880038 7.238979e-36
age05_09 2.623536 3.572990e-04
age10_14 3.583111 6.760471e-07
age15_19 3.824128 1.263355e-07
age20_24 3.900156 7.553260e-08
age25_29 4.155632 9.187360e-09
age30_34 4.157639 8.556965e-09

Estimate Pr(>|z|)
scar -0.5470646 0.0001034434

4. What is the interpretation of each coefficient and corresponding p-values?
In particular how would you explicit the vaccine effect?

5. Same questions with the following logistic model

e.common2 <- glm(status=="case" ∼ 0 + age + scar,
family = binomial(link="logit"),
weight = n,
data = bcg.r)

summary(e.common2)

Estimate Pr(>|z|)
age00_04 -8.880038 7.238979e-36
age05_09 -6.256502 6.277280e-195
age10_14 -5.296927 2.940433e-257
age15_19 -5.055910 1.366578e-175
age20_24 -4.979882 2.502577e-169
age25_29 -4.724406 8.390947e-222
age30_34 -4.722399 4.365121e-253

Estimate Pr(>|z|)
scar -0.5470646 0.0001034434
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6. Have a look at the following predicted values. Can you guess what they are?
How would they look like for e.common2?
Can you compute those values yourself based on the estimated coefficients?

data.frame(age = bcg.r$age[1:14],
scar = bcg.r$scar[1:14],
pred1 = predict(e.common, type = "link")[1:14],
pred2 = predict(e.common, type = "response")[1:14])

age scar pred1 pred2
8 00_04 0 -8.880 0.00014
9 05_09 0 -6.257 0.00191
10 10_14 0 -5.297 0.00498
11 15_19 0 -5.056 0.00633
12 20_24 0 -4.980 0.00683
13 25_29 0 -4.724 0.00880
14 30_34 0 -4.722 0.00882

age scar pred1 pred2
1 00_04 1 -9.427 0.00008
2 05_09 1 -6.804 0.00111
3 10_14 1 -5.844 0.00289
4 15_19 1 -5.603 0.00367
5 20_24 1 -5.527 0.00396
6 25_29 1 -5.271 0.00511
7 30_34 1 -5.269 0.00512

7. How would you assess the main modeling assumption based on the previous
software outputs?

[Extra] The following code fit a common effect model on the probability scale.
Why is this model less reasonnable than the one using the odds scale?
Why is it challenging for the software to estimate the model parameters?
(this is why starting value are input to glm)

starting.values <- c(0.035,0.1,0.35,0.4,0.46,0.75,0.78,-0.03)/100
e.common3 <- glm(status=="case" ∼ 0 + age + scar,

family = binomial(link="identity"),
weight = n,
data = bcg.r,
start = starting.values)

summary(e.common3)

Estimate Pr(>|z|)
age00_04 0.0003547222 7.061058e-02
age05_09 0.0016196894 2.748984e-07
age10_14 0.0039166478 6.419051e-13
age15_19 0.0044351916 1.340900e-11
age20_24 0.0049835320 1.773590e-10
age25_29 0.0078678282 3.886355e-12
age30_34 0.0081484003 2.034830e-13

Estimate Pr(>|z|)
scar -0.0002939937 0.1500859
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Part III
Another possible analysis is to model an interaction between age and vaccine:
e.full <- glm(status=="case" ∼ age * scar,

family = binomial(link="logit"),
weight = n,
data = bcg.r)

summary(e.full)

Estimate Pr(>|z|)
(Intercept) -8.934982 4.094169e-19
age05_09 2.458989 1.857212e-02
age10_14 3.634702 3.556874e-04
age15_19 4.007728 1.014914e-04
age20_24 4.131781 5.550098e-05
age25_29 4.139192 4.461984e-05
age30_34 4.220099 2.976596e-05

Estimate Pr(>|z|)
scar -0.4339847 0.7589523
age05_09:scar 0.3204617 0.8275025
age10_14:scar -0.1054519 0.9417362
age15_19:scar -0.3082730 0.8314994
age20_24:scar -0.4467520 0.7580548
age25_29:scar 0.2344074 0.8720925
age30_34:scar -0.1773891 0.9045692

8. What is the interpretation of each coefficient and corresponding p-values?
In particular how would you explicit the vaccine effect?

9. Same questions with the following logistic model:

e.full2 <- glm(status=="case" ∼ 0 + age + age:scar,
family = binomial(link="logit"),
weight = n,
data = bcg.r)

summary(e.full2)

Estimate Pr(>|z|)
age00_04 -8.934982 4.094169e-19
age05_09 -6.475993 3.532959e-102
age10_14 -5.300280 3.119233e-172
age15_19 -4.927254 7.323866e-86
age20_24 -4.803201 1.552490e-101
age25_29 -4.795791 1.327620e-180
age30_34 -4.714883 3.389080e-227

Estimate Pr(>|z|)
age00_04:scar -0.4339847 0.75895232
age05_09:scar -0.1135229 0.77828821
age10_14:scar -0.5394366 0.05878419
age15_19:scar -0.7422577 0.01819865
age20_24:scar -0.8807367 0.00611894
age25_29:scar -0.1995773 0.56376575
age30_34:scar -0.6113738 0.15957550
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10. Can you make sense of the following F-tests?

anova(e.full, test = "Chisq")

Analysis of Deviance Table

Model: binomial, link: logit

Response: status == "case"

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 27 3504.0
age 6 200.659 21 3303.3 < 2.2e-16 ***
scar 1 15.297 20 3288.0 9.187e-05 ***
age:scar 6 3.600 14 3284.4 0.7306
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

anova(e.full2, test = "Chisq")

Analysis of Deviance Table

Model: binomial, link: logit

Response: status == "case"

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 28 112126
age 7 108823 21 3303 < 2.2e-16 ***
age:scar 7 19 14 3284 0.008516 **
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

11. Discuss the pros and cons of each approach/parametrisation.
What would you report in a scientific article?
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Exercise 2: The Bissau study revisited
In rural Guinea-Bissau, 5274 children under 7 months of age were visited two times
at home, with an interval of approximately 6 months. Information about vaccina-
tion (BCG, DTP, measles vaccine) was collected at each visit and at second visit,
death during follow-up was registered. Other children move away during follow-up
or survive until the second visit (’censored’). The dataset bissau.txt contain the
available information:

bissau <- read.table("https://bozenne.github.io/doc/Teaching/bissau.txt",
header=TRUE)

str(bissau)

’data.frame’: 5274 obs. of 8 variables:
$ id : int 1 2 3 4 5 6 7 8 9 10 ...
$ fuptime : int 65 161 166 166 161 161 166 166 166 166 ...
$ fupstatus: chr "dead" "censored" "censored" "censored" ...
$ bcg : chr "yes" "yes" "no" "yes" ...
$ dtp : int 1 2 0 0 0 0 2 1 2 2 ...
$ age : int 182 125 69 96 131 26 129 90 119 146 ...
$ agem : int 5 4 2 3 4 0 4 2 3 4 ...
$ dtpany : logi TRUE TRUE FALSE FALSE FALSE FALSE ...

We already analyzed this dataset in Practical 1: we looked at the marginal risk,
odds, and rate of death in each vaccination group and compare them between groups.
We would now like account for age in the analysis of the effects of DTP and BCG on
the mortality. To this end we will use a Poisson regression model, under the strong
assumption that the mortality is constant over the follow-up time.

1. Fit a Poisson regression model for survival with follow-up time as the time vari-
able (i.e., using log(fuptime) as offset), including bcg and agem as categorical
covariates. How is BCG vaccination associated with the mortality rate?

2. Estimate the effect of any dose of DTP, using the created variable dtpany,
adjusted only for agem as a categorical variable.

3. Now, also adjust for bcg. What happened? Can you explain?

4. Is there an interaction between DTP and bcg?
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Appendix A: Comparing proportions of events
between two groups

Consider only the first age group:
table227.age2 <- table227[,,"05_09"]
table227.age2

status
scar case conall

0 11 7143
1 14 10184

Difference
We can test the difference in proportion of infection between the groups using
library(exact2x2)
test.age2 <- binomMeld.test(x1 = table227.age2["0","case"],

n1 = sum(table227.age2["0",]),
x2 = table227.age2["1","case"],
n2 = sum(table227.age2["1",]),
parmtype = "difference", conf.int = TRUE)

test.age2

melded binomial test for difference

data: sample 1:(11/7154), sample 2:(14/10198)
proportion 1 = 0.0015376, proportion 2 = 0.0013728, p-value = 0.9282
alternative hypothesis: true difference is not equal to 0
95 percent confidence interval:
-0.001577776 0.001061454

sample estimates:
difference (p2-p1)

-0.0001647831

The results can be extract from the object test.age2 doing:
data.frame(estimate = unname(test.age2$estimate),

lower = test.age2$conf.int[1],
upper = test.age2$conf.int[2],
p.value = test.age2$p.value)
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estimate lower upper p.value
1 -0.0001647831 -0.001577776 0.001061454 0.928197

An alternative implementation uses a binomial model with an identity link:
e.glm_diff <- glm(status=="case" ∼ scar,

family = binomial(link="identity"),
weight = n,
data = bcg.r[bcg.r$age=="05_09",])

summary(e.glm_diff)$coef

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.0015376013 0.0004632477 3.3191776 0.00090283
scar -0.0001647831 0.0005907876 -0.2789211 0.78030537

Estimates are identical but p-value and confidence intervals will differ in small
samples as the glm function rely on more crude approximation for quantifying the
uncertainty compared to binomMeld.test.

Ratio
We can test the ratio between the proportion of infection in the two groups using
binomMeld.test(x1 = table227.age2["0","case"],

n1 = sum(table227.age2["0",]),
x2 = table227.age2["1","case"],
n2 = sum(table227.age2["1",]),
parmtype = "ratio", conf.int = TRUE)

melded binomial test for ratio

data: sample 1:(11/7154), sample 2:(14/10198)
proportion 1 = 0.0015376, proportion 2 = 0.0013728, p-value = 0.9282
alternative hypothesis: true ratio is not equal to 1
95 percent confidence interval:
0.376769 2.172097

sample estimates:
ratio (p2/p1)

0.892831
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An alternative implmentation uses a binomial model with a log link:
e.glm_ratio <- glm(status=="case" ∼ scar,

family = binomial(link="log"),
weight = n,
data = bcg.r[bcg.r$age=="05_09",])

cbind(RR = exp(coef(e.glm_ratio)),summary(e.glm_ratio)$coef)

RR Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.001537601 -6.4775316 0.3012794 -21.5000784 1.55425e-102
scar 0.892831036 -0.1133579 0.4026162 -0.2815533 7.78286e-01

Note that the p-values for binomMeld.test do not dependent on how the groups
are compared (difference, ratio, odds ratio). This is not true for glm.
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Appendix B: Parametrisation

All greek letters denote estimates (usually they are denoted with hat, e.g. θ̂ but it is omitted here for lisibility).

Part I model (probability scale) testing procedure
strata non-exposed exposed risk difference risk ratio p-value
0-4 α1 = 0.013% β1 = 0.009% β1 − α1 = −0.005% β1

α1
= 0.648 1

5-9 α2 = 0.154% β2 = 0.137% β2 − α2 = −0.016% β2
α2

= 0.893 0.928
10-14 α3 = 0.497% β3 = 0.290% β3 − α3 = −0.206% β3

α3
= 0.584 0.078

15-19 α4 = 0.719% β4 = 0.344% β4 − α4 = −0.376% β4
α4

= 0.478 0.033
20-24 α5 = 0.814% β5 = 0.339% β5 − α5 = −0.745% β5

α5
= 0.416 0.010

25-29 α6 = 0.820% β6 = 0.672% β6 − α6 = −0.147% β6
α6

= 0.820 0.695
30-34 α7 = 0.888% β7 = 0.484% β7 − α7 = −0.404% β7

α7
= 0.545 0.201

Part II 4 model (odds scale) model (probability scale) risk
strata non-exposed exposed non-exposed exposed ratio
0-4 eα = 0.014% eαeβ = 0.008% 1

1+e−α = 0.014% 1
1+e−α−β = 0.008% 0.571

5-9 eαeγ1 = 0.192% eαeγ1eβ = 0.111% 1
1+e−α−γ1 = 0.191% 1

1+e−α−γ1−β = 0.111% 0.581
10-14 eαeγ2 = 0.501% eαeγ2eβ = 0.290% 1

1+e−α−γ2 = 0.498% 1
1+e−α−γ2−β = 0.289% 0.580

15-19 eαeγ3 = 0.637% eαeγ3eβ = 0.269% 1
1+e−α−γ3 = 0.633% 1

1+e−α−γ3−β = 0.367% 0.580
20-24 eαeγ4 = 0.687% eαeγ4eβ = 0.398% 1

1+e−α−γ4 = 0.683% 1
1+e−α−γ4−β = 0.396% 0.580

25-29 eαeγ5 = 0.888% eαeγ5eβ = 0.514% 1
1+e−α−γ5 = 0.880% 1

1+e−α−γ5−β = 0.511% 0.581
30-34 eαeγ6 = 0.889% eαeγ6eβ = 0.515% 1

1+e−α−γ6 = 0.882% 1
1+e−α−γ6−β = 0.512% 0.580

Testing procedure: β = −0.547, p.value= 0.0001

Part II 5 model (odds scale) model (probability scale) risk
strata non-exposed exposed non-exposed exposed ratio
0-4 eα1 = 0.014% eα1eβ = 0.008% 1

1+e−α1 = 0.014% 1
1+e−α1 e−β = 0.008% 0.571

5-9 eα2 = 0.192% eα2eβ = 0.111% 1
1+e−α2 = 0.191% 1

1+e−α2 e−β = 0.111% 0.581
10-14 eα3 = 0.501% eα3eβ = 0.290% 1

1+e−α3 = 0.498% 1
1+e−α3 e−β = 0.289% 0.580

15-19 eα4 = 0.637% eα4eβ = 0.269% 1
1+e−α4 = 0.633% 1

1+e−α4 e−β = 0.367% 0.580
20-24 eα5 = 0.687% eα5eβ = 0.398% 1

1+e−α5 = 0.683% 1
1+e−α5 e−β = 0.396% 0.580

25-29 eα6 = 0.888% eα6eβ = 0.514% 1
1+e−α6 = 0.880% 1

1+e−α6 e−β = 0.511% 0.581
30-34 eα7 = 0.889% eα7eβ = 0.515% 1

1+e−α7 = 0.882% 1
1+e−α7 e−β = 0.512% 0.580

Testing procedure: β = −0.547, p.value= 0.0001
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Part III 8 model (odds scale) model (probability scale)
strata non-exposed exposed non-exposed exposed p-value
0-4 eα = 0.013% eαeγ = 0.009% 1

1+e−α = 0.013% 1
1+e−αe−γ = 0.009% 0.759

5-9 eαeβ1 = 0.154% eαeβ1eγeδ1 = 0.137% 1
1+e−α−β1 = 0.154% 1

1+e−α−β1−γ−δ1 = 0.137% 0.778
10-14 eαeβ2 = 0.499% eαeβ2eγeδ2 = 0.291% 1

1+e−α−β2 = 0.497% 1
1+e−α−β2−γ−δ2 = 0.290% 0.059

15-19 eαeβ3 = 0.725% eαeβ3eγeδ3 = 0.345% 1
1+e−α−β3 = 0.719% 1

1+e−α−β3−γ−δ3 = 0.344% 0.018
20-24 eαeβ4 = 0.820% eαeβ4eγeδ4 = 0.340% 1

1+e−α−β4 = 0.814% 1
1+e−α−β4−γ−δ4 = 0.339% 0.006

25-29 eαeβ5 = 0.826% eαeβ5eγeδ5 = 0.677% 1
1+e−α−β5 = 0.820% 1

1+e−α−β5−γ−δ5 = 0.672% 0.564
30-34 eαeβ6 = 0.886% eαeβ6eγeδ6 = 0.486% 1

1+e−α−β6 = 0.888% 1
1+e−α−β6−γ−δ6 = 0.484% 0.160

Testing procedure: (γ, γ + δ1, γ + δ2, γ + δ3, γ + δ4, γ + δ5, γ + δ6) vs. 0

Part III 9 model (odds scale) model (probability scale)
strata non-exposed exposed non-exposed exposed p-value
0-4 eα1 = 0.013% eα1eβ1 = 0.009% 1

1+e−α1 = 0.013% 1
1+e−α1 e−β1 = 0.009% 0.759

5-9 eα2 = 0.154% eα2eβ2 = 0.137% 1
1+e−α2 = 0.154% 1

1+e−α2 e−β2 = 0.137% 0.778
10-14 eα3 = 0.499% eα3eβ3 = 0.291% 1

1+e−α3 = 0.497% 1
1+e−α3 e−β3 = 0.290% 0.059

15-19 eα4 = 0.725% eα4eβ4 = 0.345% 1
1+e−α4 = 0.719% 1

1+e−α4 e−β4 = 0.344% 0.018
20-24 eα5 = 0.820% eα5eβ5 = 0.340% 1

1+e−α5 = 0.814% 1
1+e−α5 e−β5 = 0.339% 0.006

25-29 eα6 = 0.826% eα6eβ6 = 0.677% 1
1+e−α6 = 0.820% 1

1+e−α6 e−β6 = 0.672% 0.564
30-34 eα7 = 0.886% eα7eβ7 = 0.486% 1

1+e−α7 = 0.888% 1
1+e−α7 e−β7 = 0.484% 0.160

Testing procedure: (β1, β2, β3, β4, β5, β6, β7) vs. 0
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