Practicals - Logistic and Poisson regression

Epidemiological methods in medical research 2023

23 February 2023

Exercise 1: The BCG study revisited

We will revisit the BCG study (exercise 2 of the previous practical) where we are interested in comparing the risk of leprosy between the BCG vaccinated and non BCG vaccinated subjects:

- subjects were grouped into 7 age intervals: $0-4,5-9,10-14,15-19,20-24,25-29$, $30-34$ (in years) and we would like to adjust for age since it may confound the association between vaccination and leprosy.
- the non-vaccinated group will be composed of the whole population survey of 80,622 persons (conall in the dataset).

The purpose of this exercise is to compare 3 different approaches to quantify the vaccine effect and discuss the underlying statistical models. To focus on these objectives the code and software output is provided.

Here is a summary of the dataset:

```
bcg <- read.table("https://bozenne.github.io/doc/Teaching/bcg.txt",
    header = TRUE)
bcg$age <- as.character(bcg$age)
bcg$status <- as.character(bcg$status)
bcg.r <- bcg[bcg$status %in% c("case","conall"),]
table227 <- xtabs(n~scar+status+age, data = bcg.r)
ftable(table227)
```

 age 00_04 05_09 10_14 15_19 20_24 25_29 30_34
 scar status

0	case	1	11	28	16	20	36	47
	conall	7593	7143	5611	2208	2438	4356	5245
1	case	1	14	22	28	19	11	6
	conall	11719	10184	7561	8117	5588	1625	1234

Part I

A simple approach consists in evaluating the probability of contracting leprosy in each age and vaccination subgroup, and comparing them between vaccination subgroups.

1. Can you make sense of the following software output?

Does it help to answer the research question?

```
table227.pc <- prop.table(table227, margin = c(1,3))
ftable(round(100*table227.pc,3))
```

		age	$00 _04$	$05 _09$	$10 _14$	$15 _19$	$20 _24$	$25 _29$
scar	status							
stan								
0	case	0.013	0.154	0.497	0.719	0.814	0.820	0.888
	conall	99.987	99.846	99.503	99.281	99.186	99.180	99.112
1	case	0.009	0.137	0.290	0.344	0.339	0.672	0.484
	conall	99.991	99.863	99.710	99.656	99.661	99.328	99.516

[1] "00_04" "05_09" "10_14" "15_19" "20_24" "25_29" "30_34"
2. Here is some more complicated \mathbf{R} code.

Can you understand what it is doing? (appendix A should help)
Does it help to answer the research question?

```
age.groups <- dimnames(table227.pc)$age
age.groups
```

[1] "00_04" "05_09" "10_14" "15_19" "20_24" "25_29" "30_34"

```
library(exact2x2)
df.resI <- NULL
for(iAge in age.groups){
    iTab <- table227[,,iAge]
    iTest <- binomMeld.test(x1 = iTab["0","case"], n1 = sum(iTab["0",]),
                x2 = iTab["1","case"], n2 = sum(iTab["1",]),
                parmtype = "difference", conf.int = TRUE)
    df.resI <- rbind(df.resI,
        data.frame(age = iAge,
            estimate = unname(iTest$estimate),
                        lower = iTest$conf.int[1],
                upper = iTest$conf.int[2],
                p.value = iTest$p.value)
        )
}
df.resI
```

| | | age | estimate | lower | upper |
| :--- | ---: | ---: | ---: | ---: | ---: |\quad p.value

3. Here is the output from the same \mathbb{R} code as before except that the argument parmtype has been changed to "ratio".
Does it change your appreciation of the vaccine efficacy?
What property of the testing procedure do you notice?

| | | age | estimate | lower | upper |
| :--- | ---: | ---: | ---: | ---: | ---: | p.value

[Extra] Can you have perform a similar analysis with the glm function? (appendix A should help). What is the drawback of using glm?

Part II

A common analysis is to make a logistic model, using age as a covariate:

```
e.common <- glm(status=="case" ~ age + scar,
    family = binomial(link="logit"),
    weight = n,
    data = bcg.r)
summary(e.common)
```

	Estimate	$\operatorname{Pr}(>\|z\|)$	Estimate	$\operatorname{Pr}(>\|z\|)$	
(Intercept)	-8.880038	$7.238979 \mathrm{e}-36$	scar	-0.5470646	0.0001034434
age05_09	2.623536	$3.572990 \mathrm{e}-04$			
age10_14	3.583111	$6.760471 \mathrm{e}-07$			
age15_19	3.824128	$1.263355 \mathrm{e}-07$			
age20_24	3.900156	$7.553260 \mathrm{e}-08$			
age25_29	4.155632	$9.187360 \mathrm{e}-09$			
age30_34	4.157639	$8.556965 \mathrm{e}-09$			

4. What is the interpretation of each coefficient and corresponding p-values?

In particular how would you explicit the vaccine effect?
5. Same questions with the following logistic model

```
e.common2 <- glm(status=="case" ~ 0 + age + scar,
    family = binomial(link="logit"),
    weight = n,
    data = bcg.r)
summary(e.common2)
```

| | Estimate |
| ---: | ---: |$\quad \operatorname{Pr}(>|z|)$

6. Have a look at the following predicted values. Can you guess what they are?

How would they look like for e. common2?
Can you compute those values yourself based on the estimated coefficients?

```
data.frame(age = bcg.r$age[1:14],
scar = bcg.r$scar[1:14],
pred1 = predict(e.common, type = "link")[1:14],
pred2 = predict(e.common, type = "response")[1:14])
```

	age scar	pred1	pred2		age	scar	pred1	pred2
8	$00 _04$	0	-8.880	0.00014	1	$00 _04$	1	-9.427
9	$05 _09$	0	-6.257	0.00191	2	$05 _09$	1	-6.804
10	$10 _14$	0	-5.297	0.00498	3	$10 _14$	1	-5.844
11	$15 _19$	0	-5.056	0.00633	4	$15 _19$	1	-5.603
12	0.003671							
12	$20 _24$	0	-4.980	0.00683	5	$20 _24$	1	-5.527
13	$25 _29$	0	-4.724	0.00880	6	$25 _29$	1	-5.271
14	$30 _34$	0	-4.722	0.00882	7	$30 _34$	1	-5.269

7. How would you assess the main modeling assumption based on the previous software outputs?
[Extra] The following \mathbb{R} code fit a common effect model on the probability scale. Why is this model less reasonnable than the one using the odds scale? Why is it challenging for the software to estimate the model parameters? (this is why starting value are input to glm)
```
starting.values <- c(0.035,0.1,0.35,0.4,0.46,0.75,0.78,-0.03)/100
e.common3 <- glm(status=="case" ~ 0 + age + scar,
    family = binomial(link="identity"),
    weight = n,
    data = bcg.r,
    start = starting.values)
summary(e.common3)
```

	Estimate	$\operatorname{Pr}(>\|z\|)$	Estimate	$\operatorname{Pr}(>\|z\|)$
age00_04 0.0003547222	$7.061058 \mathrm{e}-02$	scar -0.0002939937	0.1500859	
age05_09	0.0016196894	$2.748984 \mathrm{e}-07$		
age10_14	0.0039166478	$6.419051 \mathrm{e}-13$		
age15_19 0.0044351916	$1.340900 \mathrm{e}-11$			
age20_24	0.0049835320	$1.773590 \mathrm{e}-10$		
age25_29 0.0078678282	$3.886355 \mathrm{e}-12$			
age30_34 0.0081484003	$2.034830 \mathrm{e}-13$			

Part III

Another possible analysis is to model an interaction between age and vaccine:

```
e.full <- glm(status=="case" ~ age * scar,
    family = binomial(link="logit"),
    weight = n,
    data = bcg.r)
summary(e.full)
```

	Estimate	$\operatorname{Pr}(>\|z\|)$		Estimate	$\operatorname{Pr}(>\|z\|)$
(Intercept)	-8.934982	$4.094169 \mathrm{e}-19$	scar	-0.4339847	0.7589523
age05_09	2.458989	$1.857212 \mathrm{e}-02$	age05_09:scar	0.3204617	5
age10_14	3.634702	$3.556874 \mathrm{e}-04$	age10_14:scar	-0.1054519	0.9417362
age15_19	4.007728	$1.014914 \mathrm{e}-04$	age15_19:scar	-0.3082730	0.8314994
age20_24	4.131781	$5.550098 \mathrm{e}-05$	age20_24:scar	-0.4467520	0.7580548
age25_29	4.139192	$4.461984 \mathrm{e}-05$	age25_29:scar	0.2344074	0.872092
age30_34	4.220099	$2.976596 \mathrm{e}-05$	age30_34:sca	-0.1773891	. 904569

8. What is the interpretation of each coefficient and corresponding p-values?

In particular how would you explicit the vaccine effect?
9. Same questions with the following logistic model:

```
e.full2 <- glm(status=="case" ~ 0 + age + age:scar,
    family = binomial(link="logit"),
    weight = n,
    data = bcg.r)
summary(e.full2)
```

| | Estimate |
| :--- | ---: |$\quad \operatorname{Pr}(>|z|)$

```
    Estimate Pr}(>|z|
    age00_04:scar -0.4339847 0.75895232
    age05_09:scar -0.1135229 0.77828821
    age10_14:scar -0.5394366 0.05878419
    age15_19:scar -0.7422577 0.01819865
    age20_24:scar -0.8807367 0.00611894
    age25_29:scar -0.1995773 0.56376575
    age30_34:scar -0.6113738 0.15957550
```

10. Can you make sense of the following F-tests?
```
anova(e.full, test = "Chisq")
Analysis of Deviance Table
Model: binomial, link: logit
Response: status == "case"
Terms added sequentially (first to last)
    Df Deviance Resid. Df Resid. Dev Pr(>Chi)
\begin{tabular}{lrrrll} 
NULL & & & 27 & 3504.0 & \\
age & 6 & 200.659 & 21 & \(3303.3<2.2 e-16 * * *\) \\
scar & 1 & 15.297 & 20 & \(3288.09 .187 e-05 * * *\) \\
age: scar & 6 & 3.600 & 14 & 3284.4 & 0.7306
\end{tabular}
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ', 1
```

anova(e.full2, test = "Chisq")
Analysis of Deviance Table
Model: binomial, link: logit
Response: status == "case"
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev $\operatorname{Pr}(>C h i)$

NULL			28	112126	
age	7	108823	21	$3303<2.2 e-16 * * *$	
age: scar	7	19	14	3284	$0.008516 * *$

Signif. codes: $0{ }^{\prime} * * * ' 0.001^{\prime} * * ' 0.01^{\prime *} 0.05{ }^{\prime},{ }^{\prime} 0.1^{\prime}, 1$
11. Discuss the pros and cons of each approach/parametrisation. What would you report in a scientific article?

Exercise 2: The Bissau study revisited

In rural Guinea-Bissau, 5274 children under 7 months of age were visited two times at home, with an interval of approximately 6 months. Information about vaccination (BCG, DTP, measles vaccine) was collected at each visit and at second visit, death during follow-up was registered. Other children move away during follow-up or survive until the second visit ('censored'). The dataset bissau.txt contain the available information:

```
bissau <- read.table("https://bozenne.github.io/doc/Teaching/bissau.txt",
    header=TRUE)
str(bissau)
```

```
'data.frame': 5274 obs. of 8 variables:
$ id : int 12 3 4 5 6 7 8 9 10 ...
$ fuptime : int 65 161 166 166 161 161 166 166 166 166 ...
$ fupstatus: chr "dead" "censored" "censored" "censored" ...
$ bcg : chr "yes" "yes" "no" "yes" ...
$ dtp : int 1 2 0 0 0 0 2 1 2 2 ...
$ age : int 182 125 69 96 131 26 129 90 119 146 ...
$ agem : int 54234042 34 ...
$ dtpany : logi TRUE TRUE FALSE FALSE FALSE FALSE ...
```

We already analyzed this dataset in Practical 1: we looked at the marginal risk, odds, and rate of death in each vaccination group and compare them between groups. We would now like account for age in the analysis of the effects of DTP and BCG on the mortality. To this end we will use a Poisson regression model, under the strong assumption that the mortality is constant over the follow-up time.

1. Fit a Poisson regression model for survival with follow-up time as the time variable (i.e., using log(fuptime) as offset), including bcg and agem as categorical covariates. How is BCG vaccination associated with the mortality rate?
2. Estimate the effect of any dose of DTP, using the created variable dtpany, adjusted only for agem as a categorical variable.
3. Now, also adjust for bcg. What happened? Can you explain?
4. Is there an interaction between DTP and bcg?

Appendix A: Comparing proportions of events between two groups

Consider only the first age group:

```
table227.age2 <- table227[,,"05_09"]
table227.age2
```

status		
scar	case	conall
0	11	7143
1	14	10184

Difference

We can test the difference in proportion of infection between the groups using

```
library(exact2x2)
test.age2 <- binomMeld.test(x1 = table227.age2["0","case"],
    n1 = sum(table227.age2["0",]),
    x2 = table227.age2["1","case"],
    n2 = sum(table227.age2["1",]),
    parmtype = "difference", conf.int = TRUE)
test.age2
```

 melded binomial test for difference
 data: sample 1:(11/7154), sample 2:(14/10198)
proportion $1=0.0015376$, proportion $2=0.0013728$, p -value $=0.9282$
alternative hypothesis: true difference is not equal to 0
95 percent confidence interval:
-0.001577776 0.001061454
sample estimates:
difference (p2-p1)
-0.0001647831

The results can be extract from the object test.age2 doing:

```
data.frame(estimate = unname(test.age2$estimate),
    lower = test.age2$conf.int[1],
    upper = test.age2$conf.int[2],
    p.value = test.age2$p.value)
```

```
    estimate lower upper p.value
1-0.0001647831 -0.001577776 0.001061454 0.928197
```

An alternative implementation uses a binomial model with an identity link:

```
e.glm_diff <- glm(status=="case" ~ scar,
    family = binomial(link="identity"),
    weight = n,
    data = bcg.r[bcg.r$age=="05_09",])
summary(e.glm_diff)$coef
```

```
    Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.0015376013 0.0004632477 3.3191776 0.00090283
scar -0.0001647831 0.0005907876 -0.2789211 0.78030537
```

Estimates are identical but p-value and confidence intervals will differ in small samples as the glm function rely on more crude approximation for quantifying the uncertainty compared to binomMeld.test.

Ratio

We can test the ratio between the proportion of infection in the two groups using

```
binomMeld.test(x1 = table227.age2["0","case"],
    n1 = sum(table227.age2["0",]),
    x2 = table227.age2["1","case"],
    n2 = sum(table227.age2["1",]),
    parmtype = "ratio", conf.int = TRUE)
```

```
        melded binomial test for ratio
data: sample 1:(11/7154), sample 2:(14/10198)
proportion 1 = 0.0015376, proportion 2 = 0.0013728, p-value = 0.9282
alternative hypothesis: true ratio is not equal to 1
95 percent confidence interval:
    0.376769 2.172097
sample estimates:
ratio (p2/p1)
    0.892831
```

An alternative implmentation uses a binomial model with a log link:

```
e.glm_ratio <- glm(status=="case" ~ scar,
    family = binomial(link="log"),
    weight = n,
    data = bcg.r[bcg.r$age=="05_09",])
cbind(RR = exp(coef(e.glm_ratio)),summary(e.glm_ratio)$coef)
```

	RR	Estimate	Std. Error	z value	$\operatorname{Pr}(>\|z\|)$
(Intercept)	0.001537601	-6.4775316	0.3012794	-21.5000784	$1.55425 \mathrm{e}-102$
scar	0.892831036	-0.1133579	0.4026162	-0.2815533	$7.78286 \mathrm{e}-01$

Note that the p-values for binomMeld.test do not dependent on how the groups are compared (difference, ratio, odds ratio). This is not true for glm .

Appendix B: Parametrisation

All greek letters denote estimates (usually they are denoted with hat, e.g. $\hat{\theta}$ but it is omitted here for lisibility).

Part I strata	model (probability scale)			testing procedure			
	non-exposed	exposed		risk difference	risk ratio	p-value	
$0-4$	$\alpha_{1}=0.013 \%$	$\beta_{1}=0.009 \%$		$\beta_{1}-\alpha_{1}=-0.005 \%$	$\frac{\beta_{1}}{\alpha_{1}}=0.648$	1	
$5-9$	$\alpha_{2}=0.154 \%$	$\beta_{2}=0.137 \%$		$\beta_{2}-\alpha_{2}=-0.016 \%$	$\frac{\beta_{2}}{\alpha_{2}}=0.893$	0.928	
$10-14$	$\alpha_{3}=0.497 \%$	$\beta_{3}=0.290 \%$		$\beta_{3}-\alpha_{3}=-0.206 \%$	$\frac{\beta_{3}}{\alpha_{3}}=0.584$	0.078	
$15-19$	$\alpha_{4}=0.719 \%$	$\beta_{4}=0.344 \%$		$\beta_{4}-\alpha_{4}=-0.376 \%$	$\frac{\beta_{4}}{\alpha_{4}}=0.478$	0.033	
$20-24$	$\alpha_{5}=0.814 \%$	$\beta_{5}=0.339 \%$		$\beta_{5}-\alpha_{5}=-0.745 \%$	$\frac{\beta_{5}}{\alpha_{5}}=0.416$	0.010	
$25-29$	$\alpha_{6}=0.820 \%$	$\beta_{6}=0.672 \%$		$\beta_{6}-\alpha_{6}=-0.147 \%$	$\frac{\beta_{6}}{\alpha_{6}}=0.820$	0.695	
$30-34$	$\alpha_{7}=0.888 \%$	$\beta_{7}=0.484 \%$		$\beta_{7}-\alpha_{7}=-0.404 \%$	$\frac{\beta_{7}}{\alpha_{7}}=0.545$	0.201	

Part II 4 strata	model (odds scale)		model (probability scale)		risk ratio
	non-exposed	exposed	non-exposed	exposed	
0-4	$e^{\alpha}=0.014 \%$	$e^{\alpha} e^{\beta}=0.008 \%$	$\frac{1}{e^{-\alpha}}=0.014 \%$	$\frac{1}{1+e^{-\alpha-\beta}}=0.008 \%$	0.571
5-9	$e^{\alpha} e^{\gamma_{1}}=0.192 \%$	$e^{\alpha} e^{\gamma_{1}} e^{\beta}=0.111 \%$	$\frac{1}{1+e^{-\alpha-\gamma_{1}}}=0.191 \%$	$\frac{1}{1+e^{-\alpha-\gamma_{1}-\beta}}=0.111 \%$	0.581
10-14	$e^{\alpha} e^{\gamma_{2}}=0.501 \%$	$e^{\alpha} e^{\gamma_{2}} e^{\beta}=0.290 \%$	$\frac{1}{1+e^{-\alpha-\gamma_{2}}}=0.498 \%$	$\frac{1}{1+e^{-\alpha-\gamma_{2}-\beta}}=0.289 \%$	0.580
15-19	$e^{\alpha} e^{\gamma_{3}}=0.637 \%$	$e^{\alpha} e^{\gamma_{3}} e^{\beta}=0.269 \%$	$\frac{1+e}{1+e^{-\alpha-\gamma_{3}}}=0.633 \%$	$\frac{1+e^{-\alpha-\gamma^{\prime}}}{1+e^{-\alpha-\gamma_{3}-\beta}}=0.367 \%$	0.580
20-24	$e^{\alpha} e^{\gamma_{4}}=0.687 \%$	$e^{\alpha} e^{\gamma_{4}} e^{\beta}=0.398 \%$	$\frac{1+e}{1+e^{-\alpha-\gamma_{4}}}=0.683 \%$	$\frac{1+e^{-\alpha-1}}{1+e^{-\alpha-\gamma_{4}-\beta}}=0.396 \%$	0.580
25-29	$e^{\alpha} e^{\gamma_{5}}=0.888 \%$	$e^{\alpha} e^{\gamma_{5}} e^{\beta}=0.514 \%$	$\frac{1}{1+e^{-\alpha-\gamma_{5}}}=0.880 \%$	$\frac{1+e^{-e^{-}}}{1+e^{-\alpha-\gamma_{5}-\beta}}=0.511 \%$	0.581
30-34	$e^{\alpha} e^{\gamma_{6}}=0.889 \%$	$e^{\alpha} e^{\gamma_{6}} e^{\beta}=0.515 \%$	$\frac{1+e}{1+e^{-\alpha-\gamma_{6}}}=0.882 \%$	$\frac{1+e-1}{1+e^{-\alpha-\gamma_{6}-\beta}}=0.512 \%$	0.580

Testing procedure: $\beta=-0.547$, p.value $=0.0001$

$\begin{aligned} & \text { Part II } 5 \\ & \text { strata } \end{aligned}$	model (odds scale)		model (probability scale)		$\begin{aligned} & \text { risk } \\ & \text { ratio } \end{aligned}$
	non-exposed	exposed	non-exposed	exposed	
0-4	$e^{\alpha_{1}}=0.014 \%$	$e^{\alpha_{1}} e^{\beta}=0.008 \%$	$\frac{1}{1+e^{-\alpha_{1}}}=0.014 \%$	$\frac{1}{1+e^{-\alpha_{1} e^{-\beta}}}=0.008 \%$	0.571
5-9	$e^{\alpha_{2}}=0.192 \%$	$e^{\alpha_{2}} e^{\beta}=0.111 \%$	$\frac{1}{1+e^{-\alpha_{2}}}=0.191 \%$	$\frac{1}{1+e^{-\alpha_{2} e^{-\beta}}}=0.111 \%$	0.581
10-14	$e^{\alpha_{3}}=0.501 \%$	$e^{\alpha_{3}} e^{\beta}=0.290 \%$	$\frac{1}{1+e^{-\alpha_{3}}}=0.498 \%$	$\frac{1}{1+e^{-\alpha_{3} e^{-\beta}}}=0.289 \%$	0.580
15-19	$e^{\alpha_{4}}=0.637 \%$	$e^{\alpha_{4}} e^{\beta}=0.269 \%$	$\frac{1}{1+e^{-\alpha_{4}}}=0.633 \%$	$\frac{1}{1+e^{-\alpha_{4} e^{-\beta}}}=0.367 \%$	0.580
20-24	$e^{\alpha_{5}}=0.687 \%$	$e^{\alpha_{5}} e^{\beta}=0.398 \%$	$\frac{1}{1+e^{-\alpha_{5}}}=0.683 \%$	$\frac{1}{1+e^{-\alpha_{5}} e^{-\beta}}=0.396 \%$	0.580
25-29	$e^{\alpha_{6}}=0.888 \%$	$e^{\alpha_{6}} e^{\beta}=0.514 \%$	$\frac{1+e^{1+e^{3}}}{1+e^{-\alpha_{6}}}=0.880 \%$	$\frac{1+e^{1-e_{5} e^{-p}}}{1+e^{-\alpha_{6} e^{-\beta}}}=0.511 \%$	0.581
30-34	$e^{\alpha_{7}}=0.889 \%$	$e^{\alpha_{7}} e^{\beta}=0.515 \%$	$\frac{1+e^{1}}{1+e^{-\alpha_{7}}}=0.882 \%$	$\frac{1+e^{1-} e^{-e^{-\beta}}}{1+e^{-\alpha_{7} e^{-\beta}}}=0.512 \%$	0.580

Testing procedure: $\beta=-0.547$, p.value $=0.0001$

Part III 8 strata	model (odds scale)		model (probability scale)		p-value
	non-exposed	exposed	non-exposed	exposed	
0-4	$e^{\alpha}=0.013 \%$	$e^{\alpha} e^{\gamma}=0.009 \%$	$=0.013 \%$	$\frac{1}{-\alpha_{e}-\gamma}=0.009 \%$	0.759
5-9	$e^{\alpha} e^{\beta_{1}}=0.154 \%$	$e^{\alpha} e^{\beta_{1}} e^{\gamma} e^{\delta_{1}}=0.137 \%$	$\frac{1+e^{1+e^{\prime}}}{1+e^{-\alpha-\beta_{1}}}=0.154 \%$	$\frac{1+e^{-\alpha} e^{-\gamma}}{1+e^{-\alpha-\beta_{1}-\gamma-\delta_{1}}}=0.137 \%$	0.778
10-14	$e^{\alpha} e^{\beta_{2}}=0.499 \%$	$e^{\alpha} e^{\beta_{2}} e^{\gamma} e^{\delta_{2}}=0.291 \%$	$\frac{1}{1+e^{-\alpha-\beta_{2}}}=0.497 \%$	$\frac{1+e^{-\alpha-\alpha-\sigma_{1}}}{1+e^{-\alpha-\beta_{2}-\gamma-\delta_{2}}}=0.290 \%$	0.059
15-19	$e^{\alpha} e^{\beta_{3}}=0.725 \%$	$e^{\alpha} e^{\beta_{3}} e^{\gamma} e^{\delta_{3}}=0.345 \%$	$\frac{1}{1+e^{-\alpha-\beta_{3}}}=0.719 \%$	$\frac{1}{1+e^{-\alpha-\beta_{3}-\gamma-\delta_{3}}}=0.344 \%$	0.018
20-24	$e^{\alpha} e^{\beta_{4}}=0.820 \%$	$e^{\alpha} e^{\beta_{4}} e^{\gamma} e^{\delta_{4}}=0.340 \%$	$\frac{1}{1+e^{-\alpha-\beta_{4}}}=0.814 \%$	$\frac{1}{1+e^{-\alpha-\beta_{4}-\gamma-\delta_{4}}}=0.339 \%$	0.006
25-29	$e^{\alpha} e^{\beta_{5}}=0.826 \%$	$e^{\alpha} e^{\beta_{5}} e^{\gamma} e^{\delta_{5}}=0.677 \%$	$\frac{1}{1+e^{-\alpha-\beta_{5}}}=0.820 \%$	$\frac{1+e-\frac{1}{1+e^{-\alpha-\beta_{5}-\gamma-\delta_{5}}}=0.672 \% ~}{0}$	0.564
30-34	$e^{\alpha} e^{\beta_{6}}=0.886 \%$	$e^{\alpha} e^{\beta_{6}} e^{\gamma} e^{\delta_{6}}=0.486 \%$	$\frac{1}{1+e^{-\alpha-\beta_{6}}}=0.888 \%$	$\frac{1+e-1}{1+e^{-\alpha-\beta_{6}-\gamma-\delta_{6}}}=0.484 \%$	0.160

Testing procedure: $\left(\gamma, \gamma+\delta_{1}, \gamma+\delta_{2}, \gamma+\delta_{3}, \gamma+\delta_{4}, \gamma+\delta_{5}, \gamma+\delta_{6}\right)$ vs. 0

Part III 9 strata	model (odds scale)		model (probability scale)		p-value
	non-exposed	exposed	non-exposed	exposed	
0-4	$e^{\alpha_{1}}=0.013 \%$	$e^{\alpha_{1}} e^{\beta_{1}}=0.009 \%$	$\frac{1}{e^{-\alpha_{1}}}=0.013 \%$	$\frac{1}{1+e^{-\alpha_{1}} e^{-\beta_{1}}}=0.009 \%$	0.759
5-9	$e^{\alpha_{2}}=0.154 \%$	$e^{\alpha_{2}} e^{\beta_{2}}=0.137 \%$	$\frac{1}{1+e^{-\alpha_{2}}}=0.154 \%$	$\frac{1}{1+e^{-\alpha_{2}} e^{-\beta_{2}}}=0.137 \%$	0.778
10-14	$e^{\alpha_{3}}=0.499 \%$	$e^{\alpha_{3}} e^{\beta_{3}}=0.291 \%$	$\frac{1}{1+e^{-\alpha_{3}}}=0.497 \%$	$\frac{1}{1+e^{-\alpha_{3}} e^{-\beta_{3}}}=0.290 \%$	0.059
15-19	$e^{\alpha_{4}}=0.725 \%$	$e^{\alpha_{4}} e^{\beta_{4}}=0.345 \%$	$\frac{1}{1+e^{-\alpha_{4}}}=0.719 \%$	$\frac{1}{1+e^{-\alpha_{4}} e^{-\beta_{4}}}=0.344 \%$	0.018
20-24	$e^{\alpha_{5}}=0.820 \%$	$e^{\alpha_{5}} e^{\beta_{5}}=0.340 \%$	$\frac{1}{1+e^{-\alpha_{5}}}=0.814 \%$	$\frac{1}{1+e^{-\alpha_{5}} e^{-\beta_{5}}}=0.339 \%$	0.006
25-29	$e^{\alpha_{6}}=0.826 \%$	$e^{\alpha_{6}} e^{\beta_{6}}=0.677 \%$	$\frac{1-e^{-\alpha_{6}}}{1+e^{-\alpha}}=0.820 \%$	$\frac{1}{1+e^{-\alpha_{6}} e^{-\beta_{6}}}=0.672 \%$	0.564
30-34	$e^{\alpha_{7}}=0.886 \%$	$e^{\alpha_{7}} e^{\beta_{7}}=0.486 \%$	$\frac{1}{1+e^{-\alpha_{7}}}=0.888 \%$	$\frac{1}{1+e^{-\alpha_{7}} e^{-\beta_{7}}}=0.484 \%$	0.160

Testing procedure: $\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}, \beta_{6}, \beta_{7}\right)$ vs. 0

