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Exercise 1: Warm-up about case-control design

1.1 Specificities of a case control study
1. In a cohort study, the relationship between exposure and disease incidence

is investigated by following the entire cohort and measuring the rate of
occurrence of new cases in the different exposure groups. In contrast, in a
case-control study we do not consider the entire cohort. We typically consider
all the cases (sick individuals) and sample a subset of controls (disease-free
individual).

2. By sampling less controls we will increase the disease frequency (prevalence or
risk) which means that the prevalence of the disease (or the risk of a disease)
cannot be estimated without bias. The same applies for the risk difference and
risk ratio. Only the odds ratio can be estimated without bias.

3. Correct sampling of the controls is key to obtain unbiased estimates. In partic-
ular the selection probabilities for controls should not vary between exposure
groups. Selection bias will occur when this is not true. This can be illustrated
using a simple DAG where S = 1 denote being included in the study:

E Y

S = 1

DAG of a case control study where
sampling probabilities do not depend
on the exposure meaning that we can
estimate the association between E

and Y . It does not mean that all esti-
mation methods will be valid though,
as only the odds ratio will provide rea-
sonable estimates.

E Y

S = 1

DAG of a case control study where
sampling probabilities depend on the
exposure. It induces a collider bias
meaning that we cannot estimate (cor-
rectly) the association between E and
Y .
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A typical threat to this assumption is differential compliance, e.g. if many controls
refuse to participate especially when they have not been subject to the exposure of
interest.
Difficulties will also arise when using a hospital-based case control study:

• cases are new patients diagnosed at the hospital with the disease of interest

• controls are hospitalized patients with other diseases

However patients sick with other diseases are not representative of persons free of
the disease of interest - they will typically have specific risk factors (which will ap-
pear protective for the disease of interest as they are over-represented among the
controls).
Importantly controls represent risk time not persons immune to the disease. Typi-
cally they are only disease free up to when cases experience the disease but may very
well experience the disease later on.

1.2 Case control as a cohort study
1. a) The probility of being exposed and die equals the probability of being ex-

posed (p = 0.1) times the probability of dying when having been exposed
(π1 = 0.2) so we would expect 1000 ∗ p ∗ π1 = 20 persons.
Similarly we would expect 1000 ∗ p ∗ (1 − π1) = 80 persons to stay alive while
having been exposed, 1000 ∗ (1 − p) ∗ π0 = 45 persons to die while not having
been exposed, and 1000 ∗ (1 − p) ∗ (1 − π0) = 855 persons to stay alive while
not having been exposed

1. b) The risk of death among the exposed would be the number of death among
the exposed divided by the number of exposed: r1 = 1000pπ1

1000p
= π1 = 0.2.

Similarly the risk among the non-exposed is r0 = 1000(1−p)π0
1000(1−p) = π0 = 0.05. This

leads to a risk difference of 0.15, risk ratio of 4, and odds ratio of:

OR = r1/(1 − r1)
r0/(1 − r0)

= π1/(1 − π1)
π0/(1 − π0)

= 0.2/0.8
0.05/0.95 = 4.75 (1)

2. a) The probility of being included, exposed, and die equals the probability
of being exposed (p = 0.1) times the probability of dying when having been
exposed (π1 = 0.2) times the probability of being included when exposed and
dead s1,case so we would expect 1000 ∗ p ∗ π1 = 20 persons to die while having
been exposed and included.
Similarly we would expect 1000 ∗ p ∗ (1 − π1) ∗ s1,control = 8 persons to stay alive
while having been exposed and included, 1000∗(1−p)∗π0 ∗s0,case = 45 persons
to die while not having been exposed and included, and 1000 ∗ (1 − p) ∗ (1 −
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π0) ∗ s0,control = 85.5 persons to stay alive while not having been exposed and
included.

2. b) The risk of death among the exposed would be the number of death among
the exposed divided by the number of exposed:

r′
1 = 1000pπ1s1,case

1000pπ1s1,case + 1000p(1 − π1)s1,control
= 20

20 + 8 ≈ 0.7143

r′
1 = π1

π1 + (1 − π1)s1,control/s1,case
(2)

Similarly the risk among the non-exposed is

r′
0 = 1000(1 − p)π0s0,case

1000(1 − p)π0s0,case + 1000(1 − p)(1 − π0)s0,control
= 45

45 + 85.5 ≈ 0.3448

r′
0 = π0

π0 + (1 − π0)s0,control/s0,case
(3)

This leads to a risk difference of 0.369, risk ratio of 2.071, and odds ratio of

OR′ = r′
1/(1 − r′

1)
r′

0/(1 − r′
0)

= π1/((1 − π1)s1,control/s1,case)
π0/((1 − π0)s0,control/s0,case)

= 20/8
45/85.5 = 4.75

= OR
s1,case/s1,control

s0,case/s0,control
(4)

2. c) When keeping all cases and subsampling the controls, we bias the risk toward
higher risks which will in turn bias the risk difference and the risk ratio. How-
ever the odd ratio is unaffected as soon as the sampling probabilities for controls
are the same among the exposed and non-exposed, i.e. s1,control = s0,control.
More precisely equations (2) and (3) show that the risk can only be estimated
correctly when the sampling probability for the cases equals that of the control
in a given exposure group.
Equation (4) show that unbiased estimation of the odds ratio requires that the
ratio between the sampling probabilities cases vs. controls is the same between
exposure groups. This is true when the sampling probabilities of the cases and
the controls are independent of the prevalence (sufficient but not necessary
condition).
It would be a bad idea: since the sampling probability for the control would
dependent on the exposure, we would not be able to get an unbiased estimate
of the odd ratio. Note that because the sampling probabilities are identical
among the exposed, we would be able to estimate the risk among the exposed
but we would have nothing to compare it with.
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Exercise 2: Case study: BCG study
1. a) We fit a logistic model with an interaction age and vaccination status:

summary(e.glmAllI)$coef

Estimate Std. Error z value Pr(>|z|)
(Intercept) -8.9349820 1.0000658 -8.9343937 4.094169e-19
age2 2.4589892 1.0445959 2.3540099 1.857212e-02
age3 3.6347023 1.0178527 3.5709511 3.556874e-04
age4 4.0077284 1.0310599 3.8869984 1.014914e-04
age5 4.1317810 1.0249594 4.0311653 5.550098e-05
age6 4.1391915 1.0139719 4.0821560 4.461984e-05
age7 4.2200991 1.0107418 4.1752495 2.976596e-05
age1:scarYes -0.4339847 1.4142903 -0.3068569 7.589523e-01
age2:scarYes -0.1135229 0.4032064 -0.2815505 7.782882e-01
age3:scarYes -0.5394366 0.2854458 -1.8898039 5.878419e-02
age4:scarYes -0.7422577 0.3143094 -2.3615514 1.819865e-02
age5:scarYes -0.8807367 0.3212798 -2.7413387 6.118940e-03
age6:scarYes -0.1995773 0.3457337 -0.5772572 5.637658e-01
age7:scarYes -0.6113738 0.4346772 -1.4065007 1.595755e-01

We can display the new estimated probabilities (in %) by age group doing:
grid$fit.allI <- 100*predict(e.glmAllI, newdata = grid, type = "response")
pfit.allI <- reshape(grid[,c("age","scar","fit.allI")],

direction = "wide", v.names = "fit.allI",
idvar = "age", timevar = "scar")

names(pfit.allI) <- c("age","bcg.yes","bcg.no")
pfit.allI

age bcg.yes bcg.no
1 1 0.008532423 0.01316829
2 2 0.137281820 0.15376013
3 3 0.290122643 0.49654194
4 4 0.343769184 0.71942446
5 5 0.338862137 0.81366965
6 6 0.672371638 0.81967213
7 7 0.483870968 0.88813303

They look quite similar except for age group 4 and 5. b) To test whether there is
any interaction between the vaccine effect and age we can do a likelihood ratio test:
anova(e.glmAllI, e.glmAll, test = "LRT")
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Analysis of Deviance Table

Model 1: status == "case" ~ age + age:scar
Model 2: status == "case" ~ age + scar

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 14 3284.4
2 20 3288.0 -6 -3.6002 0.7306

So our data does not provide much evidence in favor of an interaction. c) To
investigate the lack of an interaction we can display the odd ratios with their (unad-
justed) confidence intervals:
## collect all log-odds and their CIs
M.coefCI <- data.frame(estimate = coef(e.glmAllI),

lower = confint(e.glmAllI)[,1],
upper = confint(e.glmAllI)[,2])

## find those related to scar
index.scar <- grep("scar",rownames(M.coefCI))
## select these coefficient and convert to OR
M.ORCI <- cbind(age = as.character(1:7),

exp(M.coefCI[index.scar,]))
## graphical display
library(ggplot2)
gg <- ggplot(M.ORCI, aes(x = age, y = estimate,

ymin = lower, ymax = upper))
gg <- gg + geom_point() + geom_errorbar()
gg <- gg + ylab("Odd ratio (95% CI)")
gg

Waiting for profiling to be done...
Waiting for profiling to be done...
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We have very little information about the odd ratio in the first age group (it
could be anything from almost 0 to 15) so we are unable to conclude about the lack
of an interaction.

2. With the 1000 randomly sampled controls, we can still estimate the (log-)odd
ratio, we obtain a similar value with a slightly higher standard error (loss of
precision due to less controls).

bcg.1000 <- bcg[bcg$status %in% c("case","con1000"),]
e.glm1000 <- glm(status=="case" ∼ age + scar,

family = binomial(link="logit"),
weight = n, data = bcg.1000)

summary(e.glm1000)$coef

Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.5008399 0.7137259 -6.306118 2.861201e-10
age2 2.6684701 0.7413354 3.599545 3.187745e-04
age3 3.4711026 0.7281379 4.767095 1.869008e-06
age4 3.9232740 0.7332599 5.350455 8.773346e-08
age5 3.9700073 0.7361925 5.392621 6.943712e-08
age6 4.0451961 0.7343900 5.508240 3.624393e-08
age7 4.2062111 0.7332278 5.736568 9.661446e-09
scarYes -0.5475497 0.1603810 -3.414056 6.400331e-04

However now the estimated probabilities (in %) of death are biased upward:
grid$fit.1000 <- 100*predict(e.glm1000, newdata = grid, type = "response")
pfit.1000 <- reshape(grid[,c("age","scar","fit.1000")],

direction = "wide", v.names = "fit.1000",
idvar = "age", timevar = "scar")

names(pfit.1000) <- c("age","bcg.yes","bcg.no")
pfit.1000

age bcg.yes bcg.no
1 1 0.6378714 1.097782
2 2 8.4716802 13.795620
3 3 17.1180047 26.313504
4 4 24.5063603 35.949285
5 5 25.3812253 37.032270
6 6 26.8313980 38.801972
7 7 30.1076144 42.687103

3. With the matched controls, we can still estimate the (log-)odd ratio, we obtain
a similar value with a slightly higher standard error (loss of precision due to
less controls - theoretically lower loss compared to random sampling).
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bcg.match <- bcg[bcg$status %in% c("case","conmatch"),]
e.glmmatch <- glm(status=="case" ∼ age + scar,

family = binomial(link="logit"),
weight = n, data = bcg.match)

summary(e.glmmatch)$coef

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.06665181 0.7998080 -1.33363483 0.1823235610
age2 -0.04206366 0.8270889 -0.05085748 0.9594390838
age3 0.01187032 0.8115586 0.01462657 0.9883301026
age4 0.07131384 0.8139114 0.08761867 0.9301797641
age5 0.02443657 0.8159681 0.02994795 0.9761085667
age6 -0.16276227 0.8136357 -0.20004317 0.8414468207
age7 -0.23798587 0.8128846 -0.29276711 0.7697001670
scarYes -0.57206476 0.1546741 -3.69851782 0.0002168621

As before the estimated probabilities (in %) of death are biased upward but now
the age effects are also biased (and non-statistically significant). But ignoring age
would lead to a biased (log-)odd ratio:
e0.glmmatch <- glm(status=="case" ∼ scar,

family = binomial(link="logit"),
weight = n, data = bcg.match)

summary(e0.glmmatch)$coef

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.1733191 0.09074598 -12.929708 3.059782e-38
scarYes -0.4768616 0.14155193 -3.368811 7.549330e-04

This is to be expected as, from a theoretical point of view, when we sample the
controls in an age-dependent way, we have to adjust on age in the analysis (regardless
of its ’statistical significance’).

4. This is because as mentionned in the anova output "Terms added sequentially
(first to last)" so the age effect is tested in a model with only age and the scar
effect in a model with only age and scar i.e. e.glmAll and no e.glmAllI.bis.
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