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Exercise 1: Warm-up about case-control design

1.1 Specificities of a case control study
1. What is the main difference between a cohort and a case control study?

2. What impact does the case-control design have on the statistical analysis?

3. What assumption is required for this analysis to provide unbiased estimates?
How can this assumption be violated?

1.2 Case control as a cohort study
A case-control study can be described as a specific cohort study. This underlying
cohort is sometimes refered to as ’study base’. To facilitate the description of the
correspondence between cohort and case control designs we will consider:

• a binary exposure E leading to two groups: exposed and non-exposed

• a binary outcome Y : death or alive at time τ (e.g. 1 year)

• no covariate (in particular no confounder), no competing risk (no death) or loss
to follow-up (emigration).

One can think about the situation where some people died of food poisoning. They
all ate meat sold at a local butcher and we would like to investigate whether that
could be the origin of the disease.

1. One (hypothetical) approach would be to go back in time the day before food
poisoning, and include everybody in town in the study. We would get the
following model of the study base:
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cohort

exposed

dead

π1 = 0.2

alive

1 − π1 = 0.8

p = 0.1

non exposed

dead

π0 = 0.05

alive

1 − π0 = 0.95

1 − p = 0.9

a) The town has 1000 inhabitants. How many would you expect1:

• die while having been exposed
• stay alive while having been exposed
• die while having not been exposed
• stay alive while having not been exposed

b) Deduce the risk difference, risk ratio, and odds ratio

2. In practice, we would instead do a case-control study, e.g. including only a
subset of the controls. We can for instance take the list of inhabitants and
randomly sample 10% of those who did not get sick:

cohort

exposed

dead

included

s1,case = 1

π1 = 0.2

alive

included

s1,control = 0.1
not

included

1 − π1 = 0.8

p = 0.1
non

exposed

dead

included

s0,case = 1

π0 = 0.05
alive

included

s0,control = 0.1
not

included

1 − π0 = 0.95

1 − p = 0.9

a) How many would you now expect in the study2:

• die while having been exposed
• stay alive while having been exposed
• die while having not been exposed
• stay alive while having not been exposed

b) Deduce the risk difference, risk ratio, and odds ratio
1You can write it formally (using p, π1, and π0) or numerically.
2You can write it formally (using p, π1, π0, s1,case, s1,control, s0,case, s0,control) or numerically.
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c) How do the fractions of cases and controls sampled among the exposed and non-
exposed affect the estimation of the risk difference, risk ratio, and odds ratio?
Would it be a good idea to include all the persons who died from food poisoning
(regardless of whether they ate meat from the local butcher as cases) and as
controls all (alive) customers of the local butcher plus 10% of the other (alive)
inhabitants.

Exercise 2: Case study: BCG study
We will now re-visit the BCG study where we look at the survival of children de-
pending on their vaccination status. The dataset contains the following variables:

• age: age group

• scar: vaccination status

• status: death (case) or alive (con1000, conall, conmatch). conall refer to
the whole control population, con1000 to 1000 randomly selected controls, and
conmatch to age matched controls.

• n: number of children of a given age, vaccination status, and survival status or
control group

library(Epi)
bcg <- read.table("http://publicifsv.sund.ku.dk/∼pka/epidata/bcgalldata.

txt", header=TRUE)
bcg$status <- as.factor(bcg$status)
bcg$scar <- factor(bcg$scar, labels = c("No","Yes"))
bcg$age <- as.factor(bcg$age)
str(bcg)

’data.frame’: 56 obs. of 4 variables:
$ age : Factor w/ 7 levels "1","2","3","4",..: 1 2 3 4 5 6 7 1 2 3 ...
$ scar : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 2 2 1 1 1 ...
$ status: Factor w/ 4 levels "case","con1000",..: 1 1 1 1 1 1 1 1 1 1 ...
$ n : int 1 14 22 28 19 11 6 1 11 28 ...
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We start by computing the age adjusted log-odds ratio for the vaccination effect
when considering all controls:
bcg.all <- bcg[bcg$status %in% c("case","conall"),]
e.glmAll <- glm(status=="case" ∼ age + scar,

family = binomial(link="logit"),
weight = n, data = bcg.all)

summary(e.glmAll)$coef

Estimate Std. Error z value Pr(>|z|)
(Intercept) -8.8800380 0.7102641 -12.502445 7.238979e-36
age2 2.6235363 0.7349321 3.569767 3.572990e-04
age3 3.5831114 0.7212206 4.968121 6.760471e-07
age4 3.8241284 0.7237070 5.284084 1.263355e-07
age5 3.9001565 0.7252749 5.377487 7.553260e-08
age6 4.1556320 0.7233366 5.745087 9.187360e-09
age7 4.1576390 0.7221755 5.757103 8.556965e-09
scarYes -0.5470646 0.1409100 -3.882370 1.034434e-04

We can extract the estimated probabilities (in %) by age group doing:
grid <- unique(bcg.all[,c("age","scar")])
grid$fit.all <- 100*predict(e.glmAll, newdata = grid, type = "response")
pfit.all <- reshape(grid[,c("age","scar","fit.all")],

direction = "wide", v.names = "fit.all",
idvar = "age", timevar = "scar")

names(pfit.all) <- c("age","bcg.yes","bcg.no")
pfit.all

age bcg.yes bcg.no
1 1 0.008050566 0.01391195
2 2 0.110857986 0.19142721
3 3 0.288888618 0.49820138
4 4 0.367333904 0.63312291
5 5 0.396235665 0.68279358
6 6 0.510980794 0.87978949
7 7 0.512002127 0.88154145
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1. Investigate whether the vaccine effect could be age dependent

a) fit a logistic model with interaction between age and vaccine status (see
e.glmAllI below). Output the fitted probabilities and compare them to
the one above (pfit.all).

e.glmAllI <- glm(status=="case" ∼ age + age:scar,
family = binomial(link="logit"),
weight = n, data = bcg.all)

b) Use a likelihood ratio test to formally quantify the evidence for an interaction
effect.

c) Output the age-specific odds ratios for the vaccine effect with their confidence
intervals. Can we conclude about the absence of an age dependent vaccine
effect?

2. Redo the analysis when using the 1000 randomly sampled controls. What is
the impact of the change of control group on the validity and precision of the
estimates?

3. [Extra] Same question with the matched controls. What happen if you omit
age from the model?
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4. [Extra] Consider this alternative parametrisation for the logistic model with
interaction:

e.glmAllI.bis <- glm(status=="case" ∼ age + scar + scar:age,
family = binomial(link="logit"),
weight = n, data = bcg.all)

summary(e.glmAllI.bis)$coef

Estimate Std. Error z value Pr(>|z|)
(Intercept) -8.9349820 1.000066 -8.93439374 4.094169e-19
age2 2.4589892 1.044596 2.35400992 1.857212e-02
age3 3.6347023 1.017853 3.57095105 3.556874e-04
age4 4.0077284 1.031060 3.88699843 1.014914e-04
age5 4.1317810 1.024959 4.03116535 5.550098e-05
age6 4.1391915 1.013972 4.08215596 4.461984e-05
age7 4.2200991 1.010742 4.17524950 2.976596e-05
scarYes -0.4339847 1.414290 -0.30685687 7.589523e-01
age2:scarYes 0.3204617 1.470644 0.21790579 8.275025e-01
age3:scarYes -0.1054519 1.442808 -0.07308792 9.417362e-01
age4:scarYes -0.3082730 1.448795 -0.21277889 8.314994e-01
age5:scarYes -0.4467520 1.450323 -0.30803615 7.580548e-01
age6:scarYes 0.2344074 1.455936 0.16100121 8.720925e-01
age7:scarYes -0.1773891 1.479581 -0.11989142 9.045692e-01

The p-value for scarYes is rather large, 0.76. So why when using the anova
function do we get a rather low p-value for scar?
anova(e.glmAllI.bis, test = "Chisq")

Analysis of Deviance Table

Model: binomial, link: logit

Response: status == "case"

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 27 3504.0
age 6 200.659 21 3303.3 < 2.2e-16 ***
scar 1 15.297 20 3288.0 9.187e-05 ***
age:scar 6 3.600 14 3284.4 0.7306
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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