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It is common to present multiple adjusted effect estimates from a single model in a single table. For example,

a table might show odds ratios for one or more exposures and also for several confounders from a single logistic

regression. This can lead to mistaken interpretations of these estimates. We use causal diagrams to display the

sources of the problems. Presentation of exposure and confounder effect estimates from a single model may

lead to several interpretative difficulties, inviting confusion of direct-effect estimates with total-effect estimates for

covariates in the model. These effect estimates may also be confounded even though the effect estimate for the

main exposure is not confounded. Interpretation of these effect estimates is further complicated by heterogeneity

(variation, modification) of the exposure effect measure across covariate levels. We offer suggestions to limit

potential misunderstandings when multiple effect estimates are presented, including precise distinction between

total and direct effect measures from a single model, and use of multiple models tailored to yield total-effect

estimates for covariates.

causal diagrams; causal inference; confounding; direct effects; epidemiologic methods; mediation analysis;

regression modeling

Abbreviation: HIV, human immunodeficiency virus.

In scientific manuscripts in which the results of population-
based research are reported, “Table 1” typically includes a
description of key demographic, social, and clinical char-
acteristics of the study groups, often categorized by the
levels or arms of the primary exposure (treatment). This
information is often useful when thinking about both inter-
nal and external validity (generalizability) of the study
results (1).
Also common is a “Table 2” that shows multivariate-

adjusted associations with the outcome for variables sum-
marized in Table 1. For example, in a study of the impact
of aspirin on stroke risk in which the main study associa-
tion is adjusted for age and sex, Table 2 might contain risk,
rate, or odds ratios for aspirin, age, and sex. Thus, the table
contains effect estimates for secondary risk factors for the
outcome in addition to the effect estimate for the primary
exposure. Usually all of the estimates are derived from the
same model.

In the present commentary, we explain how such a table
can be misleading. In particular, we illustrate how readers
can be misled by effect estimates for secondary risk factors
from the model also used to control for confounding of ex-
posure. We also offer suggestions for improving tables with
effect estimates for different variables. A related discussion
has been published by VanderWeele and Staudt (2).
“Primary effect” will refer to the causal effect of an ex-

posure of primary interest, “secondary effect” will refer to
the causal effect of a covariate not of primary interest in the
initial adjustment model (e.g., a confounder or effect-
measure modifier), “total effect” will refer to the net of all
associations of a variable through all causal pathways to the
outcome, and “direct effect” will refer to an association
after blocking or controlling some of those pathways (3–6).
We presume the reader understands causal diagrams, as
many introductions are now available (5–8). For simplicity,
we use logistic models (so coefficients of single regressors
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represent changes in the log odds of the outcome) and we
assume the outcome is uncommon at all covariate levels to
avoid complications arising from noncollapsibility of odds
ratios (9, 10).

TABLE 2 FALLACIES

An example

A recent article (11) illustrates the issues we raise above.
Page 1,359 shows a Table 2 with the main exposure (work-
related violence) and covariates including gender, age, co-
habitation status, education, and income. The text refers to
“cause-specific hazard ratios for use of psychotropics in
relation to work-related violence and the covariates gen-
der, age, cohabitation, education, income…” (11,
p. 1358) without indicating how interpretations may differ
between variables listed in Table 2. Thus, the presentation
may leave the impression that, for example, the hazard ratio
for gender can be interpreted in the same way as the hazard
ratio for the main effect of work-related violence.

Same model, different types of effect

How can Table 2 be harmful? By presenting adjusted effect
estimates for secondary risk factors alongside the adjusted
effect estimate for the primary exposure, Table 2 suggests
implicitly that all of these estimates can be interpreted simi-
larly, if not identically. This is often not the case.

Consider an observational study of the effect of human
immunodeficiency virus (HIV) seroconversion on subse-
quent age-specific 10-year risk of stroke. Figure 1 gives a
possible causal diagram for the study that implies that age
and smoking status are determined before HIV status. In this
figure, the open paths from HIV to stroke passing through
smoking and age show that the effect of HIV (the primary
exposure) on stroke risk may be confounded by these covari-
ates. This would occur if, for example, the probability of in-
fection with HIV increases with age and smoking, in both
cases perhaps due to immunosuppression. We might account
for this confounding using the following logistic model:

logitðStrokejHIV; Smoking;AgeÞ
¼ b0 þ b1 �HIVþ b2 � Smokingþ b3 �Age:

(Model 1)

We might report the estimated coefficients for HIV,
smoking, and age (or their antilogs, which are odds ratios)
in model 1 in Table 2. Many readers would assume that
these 3 coefficients (or odds ratios) could all be interpreted
similarly, simply, and causally; after all, they are mutually
adjusted. However, even if the model is correct, these 3 co-
efficients represent different types of causal effects.

Given Figure 1 and model 1, β1 can be interpreted as the
conditional total effect of contracting HIV on the 10-year
log odds (logit) of stroke, that is, the log odds ratio for the
total effect of HIV on stroke at any given level of smoking
and age. However, β2 cannot be interpreted in the same

way: In particular, it cannot be interpreted as a total effect
of smoking. In the adjusted model, β2 is a direct effect (a
direct log odds ratio) of smoking relative to HIV; that is, β2
is the portion of the smoking effect on the log odds of
stroke that is not mediated through the smoking effect on
HIV seroconversion. More precisely, it is the controlled
direct effect of smoking, that is, the causal effect of
smoking on the log odds when HIV is held fixed at a given
level, thus blocking the smoking effect on HIV. To the
extent we might allow talk of effects of aging, β3 is similarly
the controlled direct effect of aging on the log odds when
HIV and smoking are held fixed, thus blocking the age
effects on smoking and HIV (3, 12).

To interpret β2 as a direct effect of smoking after block-
ing its effect on HIV infection, we must adjust for all con-
founders of both the exposure-outcome relationship and the
mediator-outcome relationship (3, 4, 12); given Figure 1,
these assumptions are met. Given those assumptions (and
the usual assumptions of no other bias source), all 3 coeffi-
cients represent certain causal effects; nonetheless, inter-
preting all 3 as the same type of effect is a subtle error. In
particular, β1 is a total effect; β2 is a direct effect after
blocking smoking’s effect on HIV; and β3 is a direct effect
after blocking the effects of age on smoking and HIV. Yet,
many readers would interpret all 3 as total effects.

Same model, different degrees of confounding

Now suppose Figure 2, which adds an unmeasured co-
variate U that affects only smoking and stroke, is correct.
Model 1 then remains valid for obtaining an unbiased esti-
mate of the total effect of HIV on the log odds of stroke;
that is, under model 1, β1 retains its interpretation as the
total effect of HIV, as it did under Figure 1, because
smoking and age satisfy the back-door criterion for suffi-
ciency for confounding control (4, 5, 7, 13). This means
that, after conditioning on (or blocking) smoking and age,
there are no open paths between HIV and stroke besides the
direct arrow from HIV to stroke, which represents the
causal effect of interest in this analysis.

Under Figure 2, adjustment for smoking removes con-
founding of HIV by U and confounding of HIV by
smoking because U is connected to HIV only through its

Figure 1. Causal diagram for the effect of human immunodefi-
ciency virus (HIV) seroconversion on 10-year stroke risk, with con-
founding by smoking level and age.
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effect on smoking. Nonetheless, the interpretation of β2 as
a direct effect of smoking after blocking HIV is now incor-
rect, because β2 is confounded by U. More precisely, under
the causal model in Figure 2 and the regression model 1, β2
no longer validly represents an effect of smoking (although
β1 remains a valid estimate of the total HIV effect on the
log odds of stroke).
Perhaps less obviously, under Figure 2 and model 1, β3

no longer validly represents an effect of age. This is
because smoking is now a collider on the indirect path
from age to smoking to U to stroke, and adjustment for
smoking (needed to estimate the HIV effect) opens the U-
stroke path, thus biasing β3 as an effect measure (4, 5). In
other words, we are forced to control for smoking to un-
biasedly estimate the HIV effect; but under Figure 2, ad-
justment for smoking biases the estimated direct effect of
age (if there is no adjustment for U). Estimation of the
direct effect of age on stroke would require control of HIV,
smoking, and U.
We have thus illustrated how a model sufficient for esti-

mating the average effect of the primary study exposure can
be insufficient to provide an unbiased estimate of secondary
effects. Under Figure 2, to obtain an unbiased estimate of
the direct effect of smoking after blocking its effect on HIV
and the direct effect of age after blocking its effect on
smoking and HIV, we would have to adjust for U, for
example, using the following model:

logitðStrokejHIV; Smoking; Age; UÞ
¼ b0 þ b1 � HIVþ b2 � Smokingþ

b3 � Ageþ b4 � U: ðModel 2Þ

Under Figure 2, model 2, and low risk of the outcome, it
follows from basic collapsibility results (9, 10) that β1
would be approximately equal in models 1 and 2, because
HIV is unassociated with U given smoking and age
(because of the noncollapsibility of rate ratios and odds
ratios, this equality would fail using a log-linear rate or lo-
gistic risk models with common outcomes (9, 10)). None-
theless, the smoking and age coefficients (β2 and β3) may

differ considerably between the models because smoking is
associated with U given HIV and age, and age is associated
with U given HIV and smoking. This difference translates
into a bias in estimates of β2 and β3 under model 1 when
considered as estimates of smoking and age effects.

INTERPRETATION GETS HARDER WITH

HETEROGENEITY

Variation (heterogeneity) of effect measures across co-
variate levels can severely complicate separation of direct
and indirect effects (3, 14). In what follows, we will need
to distinguish between 2 sources of variation of the effect
measure for the study exposure across levels of an adjust-
ment (model) covariate, depending on whether one views
the covariate as a secondary intervention variable or merely
as a passive stratification factor (13, 15).
The first source is variation in the effect measure that is

attributable in a precise causal sense to effects of a
modeled covariate. When neither exposure nor the modeled
covariate is confounded by uncontrolled covariates, the ob-
served associations of the outcome with exposure and the
modeled covariate are attributable entirely to the joint
effects of the exposure and the covariate; in particular, in-
terventions on the modeled covariate (e.g., smoking cessa-
tion) would in this case alter the measure of exposure
effect. This source of effect-measure variation has been
called “causal interaction” (13, 15), although some find that
term objectionable because the variation might reflect
nothing more than model choice rather than interaction
defined in terms of biologic mechanisms.
The second source of variation is that attributable to

effects of uncontrolled covariates, which need not be con-
founders of the exposure effect but may still be confound-
ers of covariate effects. In this situation, intervention on a
modeled covariate might not change the exposure effect
measure at all, or at least not to the extent suggested by
mere descriptive comparison of the exposure effect
measure across the covariate’s levels. This sort of effect
variation (variation without a specified source) has been
termed “effect heterogeneity” or “effect measure modifica-
tion” (5, 13, 15), although the term “effect measure modifi-
cation” (or worse, “effect modification”) is problematic
because it evokes the more narrow concept of causal inter-
action (in which changing the covariate would change the
effect measure).

Interpretation of product terms with no uncontrolled

confounding of any variable in the model

Consider first the simpler case in which the only possible
causes of effect-measure variation are the covariates in the
model, as in Figure 1. Causal diagrams are nonparametric
and thus silent about the degree of variation because that is
a parametric property represented by coefficients of product
terms (“statistical interactions”). There is no reason to
expect homogeneity (as assumed in models 1 and 2) in
most applications; the best we can hope is that our use of a
homogeneous model (one without product terms, such as
model 1 or model 2) provides roughly unbiased estimates

Figure 2. Causal diagram for the effect of human immunodefi-
ciency virus (HIV) seroconversion on 10-year stroke risk, with con-
founding by smoking level, age, and U.
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of average exposure effects across covariates and so is not
misleading for marginal (standardized) effects (16).

However, sometimes the heterogeneity is severe enough
that it needs to be modeled, as would be the case for study-
ing HIV if the HIV odds ratio were the targeted effect
measure and varied considerably with age and smoking;
that is, if β4 or β5 were important to retain in the model:

logitðStrokejHIV; Smoking;AgeÞ
¼ b0 þ b1 � HIVþ b2 � Smokingþ b3 � Age

þ b4 � HIV� Smokingþ b5 � HIV� Age

þ b6 � Smoking� Age: ðModel 3Þ

Under Figure 1 and model 3, the log odds ratio (the change
in the log odds of stroke) associated with moving from
HIV = 0 to HIV = 1 is β1+ β4 × Smoking + β5 × Age, which
is a function of smoking and age. Typical presentations
would tabulate estimates of this quantity (or its antilog) for
various choices of smoking and age. We will consider the
causal interpretation of this quantity below.

As a preliminary, for the single-variable (“main effect”)
terms to be interpretable when product terms are used, zero
must be a meaningful value in the study for each covariate.
With product terms present, single-variable exposure terms
represent effects only when all the covariates that appear in
product terms with exposure are zero. Thus, by adding a
product term with age, we have to center age around a ref-
erence value common in the sample, so that “Age = 0” cor-
responds to this value, not actual age. Here, we will center
age by subtracting 40 years (so that age represents a devia-
tion from 40 years of age). We will also assume that non-
smokers (Smoking = 0) are included in the sample. It is
important that the units used represent meaningful differ-
ences; otherwise, product coefficients may be misleadingly
tiny even in the presence of substantial effect variation.
Hence, we will assume that age is measured in decades and
smoking in packs/day (rather than the misleadingly small
units of years and cigarettes/day).

Under Figure 1 and model 3, the smoking-and-age–
specific total effect of HIV on the log odds of stroke is β1 +
β4 × Smoking + β5 × Age, which varies with smoking and
age. Such unconfounded variation in an exposure effect
measure represents the deviation from additivity of the joint
causal effects of HIV, smoking, and aging on the log odds
of stroke. Model 3 implies that β1 is the HIV-stroke log
odds ratio when the covariates are zero, whereas the HIV-
smoking and HIV-aging product coefficients β4 and β5 rep-
resent variation in this log odds ratio across smoking and
age. Figure 1 further implies that β1 is the total effect of
HIV on the log odds of stroke among 40-year-old non-
smokers (Age = 0); β2 is the direct effect of smoking a pack
of cigarettes per day on the log odds among persons 40
years of age when HIV is prevented (HIV is set to 0); and
β3 is the direct effect of aging a decade on the log odds
among people in whom both HIV and smoking are prevent-
ed (HIV and Smoking both set to 0).

Figure 1 also implies that β4 is the change in the HIV
effect on the log odds produced by smoking one additional

pack per day; specifically, smoking an additional pack per
day adds β4 to the total HIV log odds ratio at any age.
What may be less anticipated, however, is that β4 is also
the change in the direct smoking effect on the log odds pro-
duced by HIV; specifically, HIV adds β4 to the direct effect
of smoking a pack per day on the log odds, at any given
age. Thus β4 represents modification of the total HIV and
the direct smoking log odds ratios on stroke, both condi-
tional on age.

Next, β5 is the change in the total HIV log odds ratio
from aging an additional decade, when smoking is set
(held) to a fixed level; specifically, each decade of aging
adds β5 to the HIV-stroke log odds ratio when smoking is
left unchanged. We thus might say that β5 is the direct
modification of the HIV-stroke log odds ratio produced by
a decade of aging when smoking level is held constant.
However, β5 is also the change in the log odds ratio for the
direct effect of a decade of aging produced by HIV, when
smoking level is held constant. Similarly, β6 is the change
in the log odds ratio for the direct effect of smoking a pack
per day produced by an additional decade of aging when
HIV status is unchanged and is also the change in the log
odds ratio for the direct effect of aging from an additional
pack per day when HIV status is set to a fixed level.

Model 3 forces all of the pairwise modifying effects just
described (e.g., modification of HIV-stroke log odds ratio
by age) to remain the same across the variable held cons-
tant (e.g., smoking), so that smoking-and-age–specific og
odds ratios for the HIV effect equal β1 + β4 × Smoking +
β5 × Age. Modeling heterogeneity of modification (nonad-
ditivity beyond 2-way products) would require at least a
triple product in the model (such as HIV × smoking × age);
the interpretation of the coefficient of this triple product
would vary depending on which effect was targeted.

Interpretation changes when there are uncontrolled

confounders of a covariate

Interpretation of effect-measure variation across modeled
covariates changes if some of those covariates are them-
selves confounded by uncontrolled covariates, even if the
primary study exposure is not confounded (15). In this
case, some or all of the variation in the exposure effect
measure may be due to those uncontrolled covariates. For
example, U confounds smoking in Figure 2 and confounds
the effects of age given smoking; thus, U could be respon-
sible for some of the variation in an HIV effect measure
across combined smoking and age levels. In the extreme
case in which the HIV effect measure was constant across
smoking and age given U, U would be the only remaining
cause of variation in the HIV effect measure across
smoking and age levels; thus, there would be no modifica-
tion of the HIV effect measure by smoking or age, so that
neither alteration of smoking habits nor aging would
change the HIV effect measure. The product terms in
model 3 are commonly called “interaction terms” in statis-
tics, but in this example these terms would not represent
any causal interaction among the variables in the products.

In less extreme examples conforming to Figure 2, some
variation of the HIV effect measure across smoking and
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age would remain upon control of U, so that alteration of
smoking habits would change the HIV effect measure.
Nonetheless, if U were not controlled, the observed varia-
tion of the HIV effect measure across smoking and age
would not equal the change in the HIV odds ratio that
would be produced by a change in smoking or by aging. In
other words, U could confound the apparent modification
of the HIV effect measure by smoking and age even if it
did not account for it entirely. We note that in Figure 2, the
confounding of age modification of the HIV effect measure
by U would be entirely due to conditioning on smoking
(which is a collider for U and age (17)); again, however,
conditioning on smoking was necessary to remove con-
founding by smoking and by U of the HIV effect measure.
To illustrate how this affects Table 2 interpretation,

suppose Figure 2 is the correct causal model and that
model 3 remains the correct regression model for the effect
of HIV on stroke. The model terms involving smoking and
age would suffice to control for confounding of the HIV-
stroke relationship by smoking, age, and U because all
backdoor paths from HIV to stroke that include U are
blocked by conditioning on smoking and age. Thus, the
total effect of HIV on the cohort would still be given by
smoking-and-age standardization, and smoking-and-age–
specific ffects of HIV on the log odds of stroke would still
equal β1 + β4 × Smoking + β5 × Age.
Nonetheless, we would expect confounding of smoking

by U to bias most interpretations given above in terms of
the effects of smoking or aging on stroke or HIV effect
measures. Specifically, we could no longer interpret β2 and
β3 as direct effects of smoking and aging on the log odds
of stroke, β4 and β5 as alterations of the HIV log odds ratio
produced by smoking or aging, or β6 as alteration of
smoking log odds ratios by aging or vice-versa. Thus,
under Figure 2, β4, β5, and β6 no longer represent deviation
from additivity of the joint causal effects on the log odds
(causal interactions). For example, because of confounding
by U, we could no longer interpret β4 as the change in the
HIV-stroke log odds ratio produced by each additional pack
per day of smoking. In particular, β1 and β1 + β4 would
remain the total HIV effects on the log odds among the
nonsmokers and pack-per-day smokers, yet β4 would be
biased by U effects as a measure of modification of the
HIV-stroke log odds ratio by smoking. Put another way, β4
no longer equals the departure from additivity of the joint
causal effects of HIV and smoking on the stroke log odds
(their causal interaction on the logit scale), even though β1
and β1 + β4 still equal the effects of HIV on the log odds of
stroke among nonsmokers and pack-per-day smokers given
age.
Phrased more generally, under Figure 2, U could con-

found the apparent modification of the HIV effect measure
by smoking and age, even though U would not confound
the smoking- and age-specific total effects of HIV. The var-
iation in an HIV effect measure across smoking and age
would be real but could be produced entirely or partly by
the unobserved differences in U across levels of smoking
or age, rather than by smoking and age alone. Because the
graph is nonparametric (and in particular not dependent
the chosen effect measure), this conclusion would apply

regardless of the measure or model form used to quantify
effects.

Table 2 may discourage realistic modeling

The desire for simple estimates to present in Table 2 may
discourage realistically flexible variable specifications. For
example, spline coding of variables can improve model fit
over linear or categorical codings and produce more credi-
ble smooth models of complex dose-response functions (5,
18–20). However, splines require one to recode a variable
into several functions, the coefficients of which lack simple
interpretation. Similarly, the use of “black-box” machine
learning techniques (21, 22) or many product terms among
multiple variables can improve model fit and validity but
does not produce easily interpretable coefficients. Outputs
of flexible regressions can be presented in terms of inter-
pretable effect measures (e.g., risk differences or ratios)
comparing specific values of a variable (e.g., 1 pack per
day smokers vs. nonsmokers), but the extra labor and com-
mentary required may lead some investigators to opt for
models that are less flexible and less valid than what can be
easily fit with modern software.

AVOIDING TABLE 2 FALLACIES

A reasonable starting point for causal modeling is con-
struction of plausible causal diagrams that display the ana-
lyst’s best understanding of the literature. Those diagrams
encode the causal assumptions used to select covariates for
inclusion in the model (3–7, 23, 24). Table 2 problems can
be avoided by limiting the table to estimates of the primary
exposure effect measures under the different models, with
the secondary “adjustment” covariates reported in a foot-
note along with how they were categorized or modeled, as
is common practice in space-limited presentations. This
practice leaves room for multiple estimates for the same ex-
posures using different models (e.g., showing results from
adjustment under different causal assumptions or diagrams
or for difference as well as ratio measures of effect). If
some of the primary exposures are intermediate with
respect to other primary exposures, these intermediate pri-
maries will have to be left out of the model used to estimate
the total effects of the other primary exposures; thus, the
estimates in this table may be derived from models with
different covariate subsets.
Using different covariate subsets would allow Table 2 to

include estimates of total effects of secondary covariates
(which might be useful to other researchers). In our
example, Table 2 could provide estimates of odds ratios for
total effects of each variable in Figure 1, using a model
with all 3 variables to estimate the total HIV effect on
stroke (adjusted for smoking and age) but using a model
without HIV to estimate the total smoking effect on stroke
and a model with age alone to estimate the total age effect
on stroke. This approach invites objections, however;
among them is that the direct effect of smoking is what is
needed for sensitivity analysis for other HIV-stroke an-
alyses that did not have smoking measurements (because
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confounding by smoking is transmitted only through its
effects outside of any effect on HIV).

If indeed the direct effects are of interest, then Table 2
could include effect estimates from the model with all 3 var-
iables. In that case, it seems advisable that the text descrip-
tion note that the smoking and age estimates are for direct
effects. Under Figure 2, these interpretations require that the
model include variables like U (if, unlike U, they are mea-
sured) that confound the smoking and age direct effects even
if they do not confound the HIV effects (5, 6, 9).

DISCUSSION

The problem with a table presenting multiple estimated
effect measures from the same model (“Table 2”) is that it
encourages the reader to interpret all these estimates in the
same way, typically as total-effect estimates. As illustrated
above, the interpretation of a confounder effect estimate
may be different than for the exposure effect estimate. Of
course, it is possible that some secondary reported associa-
tions are unbiased for total effects and that others are unbi-
ased for direct effects; nonetheless, the assumption that all
estimates reported in Table 2 are for total effects is not war-
ranted. Thus, we recommend that a presentation of second-
ary effect estimates would best specify the type of effect
being estimated.

As in all causal modeling, the interpretations described
above should raise questions about the ethics and feasibility
of the interventions implicit in the effect definitions. In the
example, definition of the direct effect of age requires
holding a person’s smoking level and HIV status constant
as they age, which would be unethical for smokers (among
whom reduction should be encouraged) and infeasible even
if desirable for those HIV negative (because some will
maintain unsafe practices). More generally, definitions of
direct and indirect effects involve combined interventions
on both the exposure and mediators; some combinations
may resemble nothing anyone would consider in reality
(25–27), thus violating positivity constraints (28).

In sum, presenting estimates of effect measures for sec-
ondary risk factors (confounders and modifiers of the expo-
sure effect measure) obtained from the same model as that
used to estimate the primary exposure effects can lead
readers astray in a number of ways. Extra thought and de-
scription will be needed when interpreting such secondary
estimates.
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