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We use causal diagrams to illustrate the consequences of matching
and the appropriate handling of matched variables in cohort and
case-control studies. The matching process generally forces certain
variables to be independent despite their being connected in the
causal diagram, a phenomenon known as unfaithfulness. We
show how causal diagrams can be used to visualize many previous
results about matched studies. Cohort matching can prevent con-
founding by the matched variables, but censoring or other missing
data and further adjustment may necessitate control of matching
variables. Case-control matching generally does not prevent con-
founding by the matched variables, and control of matching vari-
ables may be necessary even if those were not confounders initially.
Matching on variables that are affected by the exposure and the
outcome, or intermediates between the exposure and the outcome,
will ordinarily produce irremediable bias.
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Introduction
Balanced matching forces the distribution of the
matching factors to be identical across groups of
individuals. These groups are defined by the expos-
ure in cohort studies and by the outcome in case-
control studies. The goal of matching differs by
study design. In cohort studies, matching is used
to prevent confounding due to the matching factors;
if there is no source of bias other than confounding
by the matching factors, adjustment for these fac-
tors may be unnecessary to remove bias. In case-
control studies, matching is used to increase statis-
tical efficiency when a subsequent procedure (e.g.
stratification) is used to adjust for confounding,
but introduces selection bias; thus, adjustment for
the matching factors may be necessary to remove
this bias even if the factors were not confounders
to begin with.1

In this paper, we use causal diagrams to represent
matched studies and describe how appropriate handling
of matching variables can be inferred from the dia-
grams. We provide diagrammatic explanations of well-
known statistical results for matched studies (which we
have often found some students have difficulty under-
standing in their algebraic form). We consider cohort
studies with and without censoring or other missing
data, and case-control studies. We describe matching
on factors that would and would not be confounders
in the absence of matching. In Appendix 1, we consider
matching that produces irremediable bias (e.g. on vari-
ables that are affected by the exposure and the out-
come, or intermediates between the exposure and the
outcome). In Appendix 2, we provide results about the
direction of bias without adjustment for the matching
variable. For simplicity, we assume throughout that
there is no measurement error, and we deal only with
expected values, ignoring random error.
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Causal diagrams and bias
The theory of causal directed acyclic graphs (DAGs)
can now be found in many reviews and books.2–5

Briefly, a DAG includes nodes (measured and un-
measured variables) linked by directed edges
(arrows). A causal DAG is one in which the absence
of an arrow between two variables implies the ab-
sence of a direct causal effect, and in which it
assumed that all shared causes of any pair of vari-
ables are included in the graph.

A path between two variables is any non-crossing,
non-repeating sequence of arrows (regardless of their
directions) connecting the two variables. A directed
path is a path traced out entirely along arrows head
to tail. If there is a directed path from X to Y, X is
called an ancestor of Y and Y is called a descendant of
X. A variable is a collider on a path if two arrowheads
on the path converge on it. A path is said to be
blocked or closed if it contains a non-collider that
has been conditioned on, or if it contains a collider
that has not been conditioned on and no descendants
of the collider have been conditioned on; otherwise it
is unblocked or open. Two variables are d-separated if
all paths between them are blocked; otherwise they
are d-connected. Two sets of variables are said to be

d-separated if each variable in the first set is d-sepa-
rated from every variable in the second set.

The directed paths from the exposure to the out-
come transmit the effects under study and so are
target (causal) paths; non-directed open paths be-
tween the exposure and the outcome transmit bias
for estimating the effect of the exposure on the out-
come and so are biasing paths. Given the background
knowledge encoded in a causal DAG, we can use the
compatibility assumption to determine whether the
causal effect of the exposure on the outcome can be
identified given certain variables in the graph, and
can find sets of variables that are sufficient to identify
that effect. A DAG is compatible with the joint prob-
ability distribution of the variables in the graph if,
whenever two sets of variables are d-separated given
a third set, the two sets are conditionally independent
given the third. Compatibility is essential for the DAG
to tell us which biases are removed or may be pro-
duced by covariate adjustment given the data distri-
bution (adjustment validity). In all our examples we
assume that the DAGs are causal and compatible with
the underlying distribution.

The distribution is faithful to a DAG if two sets of
variables are associated conditional on a third set

BOX 1 BASIC CAUSAL DIAGRAM TERMINOLOGY

� Parent/Child: if there is an arrow from X to Y, X is called a parent of Y and Y is called a child of X.

� Path: any non-crossing, non-repeating sequence of arrows (regardless of their directions) connecting
two variables.

� Directed path: a path traced out entirely along arrows head to tail.

� Ancestor/Descendant: if there is a directed path from X to Y, X is called an ancestor of Y and Y is
called a descendant of X.

� Collider: a variable is a collider on a path if two arrowheads converge on it.

� Blocked (closed) path/Unblocked (open) path: a path is said to be blocked or closed if it contains a
non-collider that has been conditioned on, or it contains a collider that has not been conditioned on
and no descendants of the collider have been conditioned on; otherwise it is unblocked or open.

� D-separation/D-connectedness: Two variables (or two sets of variables) are said to be d-separated if
every path between them is blocked; otherwise they are d-connected.

� Target (causal) paths: the directed paths from the exposure to the outcome which transmit the target
effect.

� Biasing paths: non-directed open paths between the exposure and the outcome, which transmit bias
for estimating the effect of the exposure on the outcome.

� Compatibility: two sets of variables are independent conditional on a third set whenever the two sets
are d-separated given the third.

� Faithfulness: two sets of variables are associated conditional on a third set whenever the two sets are
d-connected given the third.
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whenever the two sets are d-connected given the
third. Faithfulness is not necessary to determine ad-
justment validity from the DAG; nonetheless, its vio-
lation implies that there will be adjustments with no
impact on bias despite the DAG suggesting otherwise.
Fortunately, unfaithfulness requires very specific can-
cellation or balancing of associations that is unlikely
to occur naturally. One can however impose certain
constraints on the data-generating process that pro-
duce unfaithfulness. Matching with a constant sub-
ject ratio within matched sets (balanced matching) is
an example in which the selection process forces cer-
tain variables to be independent despite their being
d-connected, thus inducing unfaithfulness. Balanced
matching is the most common matching strategy, and
we will use the term ‘matching’ to refer to that unless
noted otherwise.

To deduce the impacts of adjustment, we will make
use of well-known results on noncollapsibility:6 ad-
justment for a binary covariate L will change the
risk ratio and difference if and only if L is associated
with (and thus d-connected to) exposure uncondi-
tionally and with disease given exposure; L adjust-
ment will change the odds ratio if and only if L is
associated with exposure given disease and is asso-
ciated with disease given exposure. These results con-
tinue to hold for nonbinary L, apart from artificial
exceptions in which no change (collapsibility) occurs
despite d-connections, including unfaithful distribu-
tions produced by matching.

Cohort studies without censoring
or other missing data
Most cohort matching starts with exposed subjects
and for each one selects one or more unexposed sub-
jects with the same values for the matching factors.
Subjects that are not matched are usually dis-
carded from the analysis. Often cohort matching is
balanced in that the ratio of exposed to unexposed
is constant across the sets (e.g. two unexposed
might be matched to every exposed). Balanced
cohort matching forces the baseline distribution of
the matching factors to be identical between the
exposed and the unexposed. With balanced matching
to the exposed, the distribution of matching factors in
the sub-cohort formed by all matched sets is the same
as the distribution of the matching factors among the
exposed subjects in the original cohort. Because
balanced matching on a variable L ensures that the
distribution of L will be identical between the exposed
and unexposed in the matched sub-cohort, an ana-
lysis restricted to the sub-cohort does not need adjust-
ment for L to remove bias.

The concepts discussed in this section apply to all
forms of balanced matching, including individual
and frequency matching, matching the exposed to
the unexposed or the unexposed to the exposed,

and matching on variables or on propensity scores.
For simplicity, however, we will focus on the conse-
quences of matching to the exposed on a variable L.
Our implicit causal parameter is then the average
causal effect of exposure in the exposed. We consider
three scenarios: (i) L is a confounder, (ii) L is asso-
ciated with the exposure but is not a confounder, and
(iii) L is associated with the outcome but is not a
confounder.

(i) L is a confounder
Figure 1 represents a matched cohort study of the
effect of statin therapy E (1: yes, 0: no) on cardiovas-
cular disease D (1: yes, 0: no) with confounding by
hypercholesterolaemia L (1: yes, 0: no). The variable S
indicates whether an individual in the source popula-
tion is selected for the matched study (1: yes, 0: no).
The square around S¼ 1 indicates that the analysis is
conditional on having been selected into the matched
study (S¼ 1), i.e. only subjects in the matched sets
are included in the analysis.

There are arrows from E and L to S because selec-
tion into the sub-cohort depends on the values of
E and L. The arrow from E to S indicates that the
exposed are more likely to be selected into the
matched sub-cohort. The arrow from L to S indicates
that, among the unexposed, a subject’s value of L will
affect selection given that L affects E, for then the
exposed and unexposed will have a different distribu-
tion of L in the original cohort, and thus the distribu-
tion of L in the unexposed must be modified by the
selection to match that in the exposed.

The variables L and E are d-connected via two
paths: L-S-E and L-E. Nonetheless, L and E are inde-
pendent (by design) in the matched sub-cohort.
Matching induces an association via the path L-S-E
that is of equal magnitude, but opposite direction, to
the association via the path L-E, ensuring that L and
E are independent in the matched sub-cohort. Thus,
because of the matching, the joint distribution of the
matched data is unfaithful to the DAG in Figure 1.7

The independence of E and L ensures there is no
confounding by L in the matched sub-cohort, and
that adjustment for the matching factors is not neces-
sary to obtain valid point estimates of the effect of E
on D in the exposed.

(ii) L is associated with E but is not a confounder
Figure 2 represents a matched cohort study of the
effect of oral contraceptive use E on cardiovascular
disease D. Suppose religion L (1: religion forbids con-
traception, 0: other) has a direct effect on E, but not
on D. In this setting, there is no confounding by L,
and so adjustment or matching on L would be point-
less. Again the joint distribution is unfaithful to the
DAG, because the associations induced by each of the
paths L-S-E and L-E cancel each other.
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(iii) L is associated with D but is not a confounder
Figure 3 represents a matched cohort study of the
effect of ABO blood group E (1: non-O blood groups,
0: blood group O) on cardiovascular disease D. Sex L
(1: woman, 0: man) is associated with D but not E in
the original population, i.e. L is just a risk factor for D.
In this setting, matching on L is pointless, because
there was no confounding by L for the effect of E on
D in the original population. The E-S-L-D path can
produce bias for estimating the E effect on D if we
fail to condition on L, except for the unfaithful case
of balanced matching, in which selection is done to
maintain the null unconditional L-E association.

Suppose now we wish to estimate the causal rate ratio
in the exposed. The original balance produced by
matching at the start of follow-up will not extend to
the person-time available for the analysis if the outcome
is associated with the exposure given the matching vari-
able (L), and with the matching variable given exposure
(as in Figures 1 and 3). The resulting L-E association in
the person-time may deceive one into thinking that
adjustment for L is necessary in the balanced-matched
cohort study. In fact, the unconditional rate ratio is
unconfounded and unbiasedly estimates the effect of
the exposure in the exposed, even though it does not
equal the common L-specific rate ratio due to non-col-
lapsibility of the rate ratio.8 Moreover, the
L-standardized rate ratio (the rate ratio standardized
to the L-specific person-time distribution in the
exposed) does not equal the unconditional rate ratio
and thus does not unbiasedly estimate the effect of
the exposure in the exposed. This is because both the
exposure and the matching variable alter the person-
time distribution, and thus adjusting for differences in
person-time generally leads to collider bias.6,9,10 The
same comments apply to the rate difference.

Cohort studies with censoring or
other missing data
In the previous section, we have assumed that each
sub-cohort member is followed until either the event

of interest occurs or the study is terminated. In most
real studies, however, this assumption is not met,
because some subjects are censored due to losses to
follow-up (e.g. emigration) or competing risks (e.g.
deaths from other causes), and often subjects are
dropped from the analysis due to missing data.

In this section, we use causal diagrams to illustrate
how matching does not eliminate the need to adjust
for the matching factor in cohort studies with censor-
ing if (i) the matching factor is a risk factor for the
outcome, and (ii) censoring is associated with the
exposure given the matching factor and with the
matching factor given the exposure.

The causal DAG in Figure 4 adds to the DAG in
Figure 3 a selection variable C representing censoring
(1: censored, 0: uncensored). The arrow from L to C
reflects the assumption that women are more likely to
drop out than men. ABO blood group is associated
with certain cancers which may make subjects drop
out of the study, as represented by the arrow from E
to C. The square around C¼ 0 indicates that the ana-
lysis is necessarily restricted to those who were not
censored (C¼ 0). In this setting, although there is no
biasing path at the start of the follow-up, a biasing
path E-C-L-D is opened due to censoring during the
follow-up, necessitating adjustment for L.

Case-control studies
In case-control studies, matching ensures that cases
and controls have the same unconditional (marginal)
distribution of matching factors. The primary statisti-
cal reason for matching in case-control studies is to
improve the efficiency (reduce the variance) of the
effect estimates upon adjustment for the matching
factors. The gains in efficiency are directly related to
the strength of the association between matching
factor and outcome and inversely related to the
strength of the association between exposure and out-
come.11 Other reasons for matched case-control
designs are (i) to enable adjustment for confounding
variables which are difficult to measure, e.g., use of
siblings as controls may help to adjust for genetic
factors, and (ii) to provide an appropriate or conveni-
ent sampling frame for controls (e.g. one may sample
controls who are individually matched to cases from
the same neighbourhood without enumerating the
entire population).

L          E          D 

S=1

Figure 3 Cohort matching on a variable associated with
outcome but that is not a confounder

L          E          D 

S=1

Figure 2 Cohort matching on a variable associated with
exposure but that is not a confounder

L          E          D 

S=1

Figure 1 Cohort matching on a confounder
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The concepts discussed in this section apply gener-
ally. For simplicity, however, we assume that cases
are randomly sampled from those occurring in a
closed cohort over a defined time period and controls
are sampled from non-cases in that cohort. We will
discuss the consequences of case-control matching on
a variable L under three scenarios: (i) L is a confoun-
der, (ii) L is associated with the exposure but is not a
confounder, and (iii) L is associated with the outcome
but is not a confounder. Appendix 3 discusses the
counter-matched design.

(i) L is a confounder
Figure 5 represents a matched case-control study of
the effect of statin therapy E on cardiovascular dis-
ease D with confounding by hypercholesterolaemia L.
The variable S indicates whether an individual from
the original cohort is selected into the matched case-
control study (1: yes, 0: no). The square around S¼ 1
indicates that the analysis is conditional on having
been selected (S¼ 1). There is an arrow from D to S
because, by definition of a case-control study, disease
status affects selection. The arrow from L to S indi-
cates that, among the controls, a subject’s value of L
will affect selection given that L affects D (both
directly and indirectly).

S is a descendant of the collider D on the path L-D-
E, so conditioning on S generally opens this path from
L to E. The variables L and D are d-connected via
three paths: L-D, L-E-D and L-S-D. Matching induces
an association between L and D, via the path L-S-D,
that is of equal magnitude but opposite direction to
the net association via the paths L-E-D and L-D,
ensuring that L and D are unconditionally indepen-
dent in the matched distribution. Thus, as a result of
the matching, the joint distribution of the matched
data is unfaithful to the DAG in Figure 5. The cancel-
lation over the three paths L-E-D, L-S-D and L-D
implies that the net association over the two paths
L-S-D and L-D is not zero, implying that L and D
are associated conditional on E. In other words,
matching does not break the biasing path E-L-D, i.e.
case-control matching on a confounder L does not
adjust for confounding due to L.

Moreover, case-control matching on a confounder L
introduces selection bias, because it creates the bias-
ing path E-L-S-D. Thus, adjustment for L will usually
be necessary. The bias that results from not adjusting

for L is towards the null, because matching makes
cases and controls more alike with respect to exposure
than they are in the source population (see Appendix
2 for a detailed explanation of direction of bias).

Because E and S are independent conditional on D
and L, the L-conditional odds ratios (ORs) are collap-
sible over S, and thus the L-conditional ORs in the
case-control study equal the L-conditional ORs in the
original cohort,6,12 which have a causal interpretation
as the causal ORs within levels of L. With small num-
bers of cases and controls in each matched set,
sparse-data methods and modelling assumptions
(e.g. homogeneity of the ORs across L) are required
to estimate the L-conditional ORs.13,14

An exception to the above is the scenario depicted in
Figure 6 in which E has no effect on D. The variables
L and D are d-connected via the paths L-S-D and L-D,
but in the matched case-control study these paths
cancel each other exactly. Therefore E and D are inde-
pendent and no adjustment for L is necessary.

(ii) L is associated with E but is not a confounder
Figure 7 represents a matched case-control study of
the effect of oral contraceptive use E on cardiovascu-
lar disease D. Religion L has a direct effect on E, but
not on D. The arrow from L to S indicates that among
the controls, L will affect selection given that L affects
D through E.

The variables L and D are d-connected via two
paths: L-S-D and L-E-D. However, L and D are uncon-
ditionally independent (by design) in the matched
study distribution. Again the distribution is unfaithful
to the DAG, because the associations induced by each
of the paths L-S-D and L-E-D cancel each other.
Nonetheless, because E is associated with D given L
and with L given D, the L-D odds ratio is not collap-
sible over E, implying that L and D are associated
conditional on E.

The open path E-L-S-D in Figure 7 is a biasing path
for the effect of E on D and so adjustment for L is
necessary. Matching on a variable associated only
with the exposure will usually harm efficiency and
is considered a type of overmatching.1 The efficiency
loss increases as the effect of the exposure (on the
outcome) and its association with the matching vari-
able increase.15

In the original cohort, both the unconditional and
the L-conditional ORs are unbiased and have a causal
interpretation. We can see from Figure 7 that E and S
are associated conditional on D and so the uncondi-
tional OR for the study is not collapsible over S: the

L          E          C=0          D 

S=1

Figure 4 Cohort matching on a variable associated with
both outcome and censoring

L          E          D 

S=1

Figure 5 Case-control matching on a confounder
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unconditional OR for the study is not equal to the
unconditional OR in the original cohort. But E and
S are independent conditional on D and L and so
the L-conditional ORs for the matched study are col-
lapsible over S; thus the L-conditional ORs for the
study are equal to the L-conditional ORs for the ori-
ginal cohort.6,12

In a case-control study with matching on time (i.e.
risk-set sampling), time should be adjusted for in the
analysis if exposure prevalence varies over the study
interval.16,17 Similarly for case-control studies with
sibling or friend controls, matching should be taken
into account in the analysis, if sibship or friendship is
related to exposure (although for friend matching,
bias may remain due to overlap of friend sets).18

Figure 8 is the same as Figure 7 except E has no
effect on D. The E-L-S-D path can produce bias for
estimating the E effect on D if we fail to condition on
L, except for the unfaithful case of balanced match-
ing, in which selection is done to maintain the null
unconditional L-D association. With no E-D effect, the
L-D association is collapsible over E and thus the con-
ditional L-D association is also null, showing in turn
that the null E-D association is collapsible over L and
the unadjusted null-hypothesis test is valid. We cau-
tion however that estimation and non-null tests
involve Figure 7, where L adjustment is needed.

Assuming faithfulness, Figures 1 and 3 (for matched
cohort studies) and Figures 5 and 7 (for matched
case-control studies) imply that in the matched dis-
tribution, L is associated with D conditional on E and
L is associated with E conditional on D, so that the
OR is not collapsible over L. Figures 1 and 3 illustrate
noncollapsibility without confounding or selection
bias, whereas Figures 5 and 7 illustrate noncollapsi-
bility with selection bias, with and without
confounding.19

(iii) L is associated with D but is not a confounder
Figure 9 represents a matched case-control study of
the effect of ABO blood group E on cardiovascular

disease D. Sex L is associated with D but not E in
the source population. The arrow from L to S indi-
cates that among the controls, a subject’s value of L
will affect selection given that L affects D.

Conditioning on S, a descendant of the collider
D on the path L-D-E, creates an association between
L and E. Thus the variables L and D are d-connected
via three paths: L-D, L-E-D (because conditional on
S, L is associated with E through D, and E affects D)
and L-S-D. Matching induces an association via
the path L-S-D that is of equal magnitude, but
opposite direction, to the net result of the
associations via the path L-E-D and L-D, ensuring
that L and D are independent in the matched study
distribution. This means the sum of two paths L-S-D
and L-D is not zero and L and D are associated con-
ditional on E.

The open paths E-L-D and E-L-S-D in Figure 9 are
biasing paths for the effect of E on D and so adjust-
ment for L is necessary.12 Matching on a risk factor
that is not associated with the exposure does not
remove bias and could harm the cost efficiency.10 In
the source population, both the unconditional and the
L-conditional ORs have causal interpretations,
although the unconditional OR is closer to 1 than
the common L-specific OR (an example of noncollap-
sibility without confounding).19 E and S are asso-
ciated conditional on D and so the OR in the study
is not collapsible over S: the unconditional OR for the
study is not equal to the unconditional causal OR for
the source population. But E and S are independent
conditional on D and L and so the L-conditional ORs
for the study are collapsible over S: the L-conditional
ORs for the study equal the causal L-conditional ORs
for the source population.6,12

The magnitude of bias resulting from not adjusting
for L may be less than in the two previous scenarios
(Figures 5 and 7). To see why, we can use Cornfield’s
inequality.20 First, conditional on D, the L-E associa-
tion should be smaller than the L-D and E-D

L          E          D 

S=1

Figure 8 Case-control matching on a variable associated
with exposure but that is not a confounder (under the
causal null hypothesis of no exposure effect)

L          E          D 

S=1

Figure 6 Case-control matching on a confounder (under
the causal null hypothesis of no exposure effect)

L          E          D 

S=1

Figure 9 Case-control matching on a variable associated
with outcome but that is not a confounder

L          E          D 

S=1

Figure 7 Case-control matching on a variable associated
with exposure but that is not a confounder
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associations. This is not the case for scenarios repre-
sented in Figures 5 and 7 where L and E are asso-
ciated in the source population. Second, conditional
on D, the E-S association should be smaller than the
L-E and L-S associations. These relations suggest that
conditional on D, the association E-S should be much
smaller than the L-D and E-D associations. A weak
association between E and S conditional on D implies
that the unconditional OR for the study is not very
different from the unconditional causal OR for the
source population.

With case-cohort sampling and homogeneity of the
risk ratio, L and E are independent conditional on
D¼ 1 and D¼ 0;15 thus, E and S are independent
conditional on D and so the unconditional study OR
equals the unconditional causal risk ratio for the
source population. With density sampling and homo-
geneity of the rate ratio, L and E are not independent
conditional on D¼ 1 and D¼ 0, because the indepen-
dence of L and E at the start of follow-up will not
extend to the person-time experience for the source
population. Thus, unconditional OR for the study does
not equal the unconditional causal rate ratio.
Assuming disease and competing risks are uncommon
in all L-E categories and approximate homogeneity of
the risk, rate or odds ratio, L and E are approximately
independent conditional on D¼ 1 and D¼ 0. Thus, E
and S are approximately independent conditional on
D and the unconditional OR for the study is approxi-
mately equal to the unconditional causal OR for the
source population.

Figure 10 represents the scenario in which E has no
effect on D. L and D are d-connected via two paths:
L-S-D and L-D, even though they are independent (by
design) in the matched study distribution. There is no
biasing path from E to D so adjustment for L is
unnecessary.

In sum, in case-cohort studies, matching on a vari-
able which is a risk factor for outcome but is not
associated with exposure does not introduce selection
bias. In contrast, in density or cumulative case-control
studies, matching on such a variable may lead to
selection bias if exposure affects the outcome, because
matching variable and exposure are associated in the
matched study distribution. However, the bias result-
ing from ignoring the matching variable is negligible
when the outcome is uncommon over the risk
interval.

Discussion
We have used causal diagrams to represent matched
studies and have described how the appropriate hand-
ling of the matching variables can be inferred from
the diagrams. In general, matching produces unfaith-
fulness, in that certain variables will be independent
in the matched-data distribution despite their being
d-connected in the causal diagram generating the
matched data.

In cohort studies without censoring, balanced
matching prevents confounding by the matching fac-
tors; thus adjustment for the matching factors is not
necessary to obtain valid effect estimates in the
matched sub-cohort. Nonetheless, ignoring the
matching factors may lead to biased estimates and
invalid tests if other adjustments are made (see
Appendix 4). Furthermore, adjustment for matching
factors is needed if there is censoring associated with
the exposure given the factor and with the factor
given exposure. Even in cohort studies without cen-
soring, adjustment for matching factors is generally
needed to obtain valid variance estimates.1

In case-control studies, balanced matching on the
variables associated with both exposure and outcome
results in selection bias toward the null, and adjust-
ment for the matching factors is necessary to control
both the selection bias introduced by matching and
the original confounding. Matching on a non-con-
founder associated with the exposure leads to selec-
tion bias. Adjusting for such a variable is necessary to
control the induced selection bias, which usually
results in reduced efficiency relative to an unmatched
study in which no adjustment for the variable would
have been needed.1,11 Worse, irremediable bias can be
produced by case-control matching on a variable
affected by the exposure (such as an intermediate)
or the outcome.1,9,10,21

Keeping within the limits of causal diagrams, we have
focused on the qualitative impacts of ignoring match-
ing. Nonetheless, the purpose of matching is the poten-
tial gain in efficiency, either in practical terms (e.g.
using neighbourhood matching to minimize travel by
interviewers) or statistical terms (variance reduction).1

For quantitative studies of the impact of case-control
matching on efficiency, see the citations on pp. 179–80
of Rothman et al.;1 for the impact of observational-
cohort matching, see Greenland and Morgenstern.22
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KEY MESSAGES

� In cohort studies, matching procedures select individuals based on the values of their covariates and
exposure, and thus covariates and exposure are connected in the causal diagram through the selec-
tion node. However, matching ensures that the connected variables are independent in the matched
subpopulation despite being connected (a phenomenon known as unfaithfulness).

� Cohort matching can prevent confounding by the matched variables; censoring or other missing data
and further adjustment may however necessitate control of matching variables.

� Case-control matching generally does not prevent confounding by the matched variables; control of
matching variables may be necessary even if those were not confounders initially.

� Matching on variables that are affected by the exposure and the outcome, or intermediates between
the exposure and the outcome, will ordinarily produce irremediable bias.
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Appendix 1 Irremediable bias
induced by matching
We now discuss the consequences of matching on
the variables that are colliders on a path between
the exposure and the outcome, or intermediates
between the exposure and the outcome. For brevity,
we present here only the results for matched case-
control studies. Similar results can be obtained for
matched cohort studies. For example, in historical
(record-based) cohort studies, analysts might inadver-
tently match on post-exposure variables; more subtly,
missing data might be related to exposure and disease
(as with informative censoring), leading to nonran-
dom selection of matched subjects with complete
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data. Both problems are hazards of propensity-score
matching in database studies.23

(i) L is a collider
Figure A1 represents a matched case-control study of
oral contraceptive use E (1: yes, 0: no) on endometrial
cancer D (1: yes, 0: no). The variable L represents
presence of vaginal bleeding in the month before
the cancer diagnosis (1: yes, 0: no). L is affected by
both E and D, and is therefore a collider in the path
E-L-D. (For simplicity of presentation, we have not
represented ascertainment bias in the causal DAG in
Figure A1: vaginal bleeding leads to endometrial
cancer being diagnosed.)

The variables L and D are d-connected via three
paths: D-L, D-E-L and (after conditioning on S) D-
S-L, but L and D are independent (by design) in the
matched study distribution. S is a descendant of the
collider L on the path E-L-D; thus, conditioning on S
opens this path and alters the net association between
E and D. Matching induces an association via the
path D-S-L that is equal in magnitude, but opposite
in direction, to the net association via the paths D-E-L
and D-L. This implies that the net association from
the two paths D-S-L and D-L is not zero.

The open path E-L-S-D in Figure A1 is a biasing
path for the effect of E on D and so adjustment for
L is necessary. On the other hand, conditioning on L
opens the biasing path E-L-D leading to collider
bias.6,9,10 In this setting, matching would bias both
the unadjusted and the adjusted estimates.1

Under Figure A2, E has no effect on D. Conditioning
on variable S, a descendant of the collider L on the
path E-L-D, creates an association between E and D.
The causal structure is similar to that of Figure A1,
and again matching would bias both the unadjusted
and the adjusted estimates. Thus, both adjusted and
unadjusted null-hypothesis tests are invalid, with
probability of rejection approaching 1 in sufficiently
large samples even under the null. The above results
also apply when L is a descendant of a collider rather
than a collider.

(ii) L is intermediate between E and D
Figure A3 represents a matched case-control study of
oral contraceptive use E on endometrial cancer D. The
variable L represents endometrial hyperplasia (1: yes,
0: no). L is an intermediate between E and D.

L and D are d-connected via three paths: L-D, L-E-D
and L-S-D. Again, however, L and D are independent
(by design) in the matched study distribution. The
open path E-L-S-D in Figure A3 is a biasing path
for the effect of E on D and so adjustment for L is
necessary. On the other hand, conditioning on L
blocks the causal path E-L-D and so introduces over-
adjustment bias.6,21 Thus, in this setting, matching
biases both the unadjusted and the adjusted
estimates.1

Under Figure A4, E has no effect on D, so the same
conclusions apply as with Figure 8 (balanced case-
control matching on L will lead to a valid test of
the E-D null with no conditioning on L, but L adjust-
ment is still needed for estimation).

Appendix 2 Direction of bias
without adjustment for the
matching variable
Suppose that E, L, and D are binary variables and the
L-conditional E-D odds ratio is homogeneous (con-
stant) across L and not equal to 1. Then if L is asso-
ciated with D conditional on E and unconditionally
unassociated with E, the L-conditional ORs must be
farther from 1 than the unconditional OR.24 The same
holds if we exchange E and D, because of symmetry
of OR with respect to exposure and outcome.

Figures 5, 7, 9, A1, A2, and A3 imply that in the
matched distribution, L is associated with E condi-
tional on D but unconditionally unassociated with D
(by design). Thus, we can conclude that in the
matched population the conditional OR must be
farther from 1 than the unconditional OR.

For Figures 5, 7, 9, the above result suggests that
the adjusted OR (which is the conditional causal OR)
must be farther from 1 than the unadjusted OR
(which is biased). For Figures A1, A2, and A3, we

E          D          L 

S=1

Figure A2 Case-control matching on a variable affected by
exposure and outcome (under the causal null hypothesis of
no exposure effect)

E          D          L 

S=1

Figure A1 Case-control matching on a variable affected by
exposure and outcome

E          L          D 

S=1

Figure A3 Case-control matching on an intermediate
variable between exposure and outcome
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can only say that the non-causal adjusted OR will be
farther from 1 than the non-causal unadjusted OR.

Appendix 3 Counter-matched
design
A counter-matched design is a matched case-control
design in which information on exposure or a proxy is
used to improve statistical efficiency by maximizing the
exposure variation within matched sets.25 For a 1:1
counter-matched study, an exposed case will be paired
with an unexposed control and an unexposed case with
an exposed control, hence the name counter-matching.
For a 1:3 counter-matched study, an exposed case will
be paired with two unexposed controls and one exposed
control, and an unexposed case with two exposed con-
trols and one unexposed control.

The causal DAG in Figure A5 represents a 1:3 coun-
ter-matched study of the effect of statin therapy E (1:
yes, 0: no) on cardiovascular disease D (1: yes, 0: no)
with confounding by hypercholesterolaemia L (1: yes,
0: no). The causal DAG in Figure A5 adds to the
DAG in Figure 5 an arrow from E to S representing
counter-matching.

The variables L and D are d-connected via L-D, L-E-
D, L-S-D and L-S-E-D, but they are unconditionally
independent due to matching on L. Similarly, the
variables L and E are d-connected via L-E, L-S-E, L-
D-E and L-D-S-E, but they are unconditionally inde-
pendent due to counter-matching in this example
(the exposed:unexposed ratio equals 1 across the
strata of L). The biasing paths from E to D in
Figure A5 are E-L-D, E-L-S-D and E-S-D, represent

confounding in the original cohort, selection bias
introduced by matching on L and selection bias due
to counter-matching, respectively. Adjustment for L is
necessary to control the selection bias introduced by
matching and the original confounding. One must
adjust for the selection bias induced by counter-
matching, for example by a weighting procedure
based on the L-E-specific sampling fractions,25

because there is no variable one can condition on to
block the biasing path E-S-D.

Appendix 4 Breaking matching
with adjustment for unmatched
confounders
Matched cohort studies may lead to biased effect
estimates if the analysis is adjusted for an
unmatched covariate F associated with, but not
affected by, the exposure conditional on the matching
variable. Figure A6 is a modification of Figure 1 that
includes the unmatched confounder F.

L and E are independent in the matched population
so the three paths L-S-E, L-E, and L-F-E (because
conditional on S, L is associated with F through E,
and L affects E) should cancel each other. Adjustment
for F removes the association between L and E
through F in the matched distribution. This means
the sum of the two paths L-S-E and L-E is not zero
and thus L and E are associated after adjustment for
F. That is, adjustment for F ‘breaks the matching’
because it makes L associated with E in the matched
population. L needs to be adjusted for in the analysis
or else the effect estimate will be biased, even under
the causal null hypothesis of no effect of E on D.
Adjustment for F may be necessary if this variable
is associated with, but not affected by, both E and
D conditional on L, as is the case in Figure A6.
Similarly, breaking the matching in a matched case-
control study in which the matching variable is a
confounder will lead to an invalid test, if the analysis
is adjusted for an unmatched covariate that is asso-
ciated with the outcome conditional on the matching
variable.

E          L          D 

S=1

Figure A4 Case-control matching on an intermediate
variable between exposure and outcome (under the causal
null hypothesis of no exposure effect)

F L E D

S=1

Figure A6 Cohort matching on one of two confounders (L)

L          E          D 

S=1

Figure A5 Counter-matching on E (with matching on L)
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