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3 measures of disease frequency
• Prevalence: proportion of people with a disease

π̂ = ”number of people with the disease"
"number of people"

• Incidence rate: frequency of disease occurrence over period τ
△! unit: time−1, e.g. person-year.

λ̂τ = ”number of new cases"
"cumulative at risk time"

• Risk: probability of disease occurence between time 0 and τ

r̂(τ) = ”number of new cases"
"number of person at risk"
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Risk rate relationship (1/2)

At risk

Infected

flow (s-1): incidence rate

volume (%): prevalence

change in volume (%): risk

Assuming constant incidence rate:
• r(τ) = exp(−λτ)
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Risk rate relationship (2/2)

With varying incidence rates (3 time intervals):

r(τ) = 1− (1− λ1∆t)(1− λ2∆t)(1− λ3∆t)
≈ 1− exp(−(λ1 + λ2 + λ3)∆t)

→ useful to deal with right-censoring!
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Comparing disease frequency across 2 groups

Group 2 vaccinated vs. Group 1 non-vaccinated
• risk difference: RD(τ) = r2(τ)− r1(τ)
• relative risk: RR(τ) = r2(τ)

r1(τ)

• odds ratio: OR(τ) =
(

r2(τ)
1−r2(τ)

) / (
r1(τ)

1−r1(τ)

)

Null hypothesis of identical risks: RD = 0, RR = 1, OR = 1

Estimation and confidence intervals: see L2-summary.pdf

→ how to account for covariates? Which covariates to consider?
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Program for today

Why (mostly) worry about the bias

Definition of a causal effect

Identify bias using a graphical representation:
• introduction of directed acyclic graphs (DAGs)
• definition of confounder, collider, mediator, risk factor

Controling for confounding:
• randomization, restriction
• stratification (full vs. common effect)
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Alcohol J shape paradox
Prior knowledge:
• lifetime alchool consumption influences the risk of death

• is light alcohol consumption beneficial? 7 / 55
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Error decomposition
what can go wrong?
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Illustration: bias vs. variance
Aim: relate healthy status Y to lifetime alchool consumption X
• Y = βX + ε

But we only observe the current alchool consumption Z :
• Z = X + ξ (proxy for X )
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Error decomposition
• β: parameter of interest (also called population parameter)

deterministic quantity (i.e. fixed value)

• β̂: estimated value
random quantity (i.e. vary from study to study)

• E
[
β̂

]
: expected estimated value

deterministic quantity (i.e. fixed value)

The error can be decomposed in two terms:

β̂ − β = β̂ − E
[
β̂

]
︸ ︷︷ ︸

sampling error

+E
[
β̂

]
− β︸ ︷︷ ︸

bias
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Error decomposition
Bias: systematic difference between estimated and true parameter.
→ stable across replication studies, here E

[
β̂

]
= β

1+σ2
ξ
/σ2

X

σ2
ξ variance of the mismatch between X and Z

Sampling error: random fluctuation in the estimated quantity
→ due to the finite number of samples, here Var

[
β̂

]
= σ2

ε

nσ2
Z

→ differ from study to study
→ can be estimated

The error can be decomposed in two terms:

β̂ − β = β̂ − E
[
β̂

]
︸ ︷︷ ︸

sampling error

+E
[
β̂

]
− β︸ ︷︷ ︸
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Impact of the sample size

sample size: 50 sample size: 500
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Sampling error can be reduced by:
• replicating a study with a larger size
• pooling data from several studies

Primary concern is (generally) the bias
11 / 55



Introduction Error decomposition Causality DAGs Controlling for confounding Conclusion

Birth weight paradox
Birth weight (BW) is a strong predictor of infant mortality
• investigators stratify on BW when evaluating risk factors

This leads to an apparent paradox (Hernández-Díaz et al., 2006)
• is maternal smoking beneficial? Sometimes beneficial?
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Causality
what do we mean by ’beneficial’?
or (positive/negative) ’causal effect’?
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Causation in the epidemiological literature

Various definitions for a cause of death:
• Production: play an essential part in death.
• Necessary cause: without which death cannot occur.
• Sufficient component cause: guarantees death will occur

(alone or in conjunction with other causes).
• Probabilistic cause: increases the probability of death
• Counterfactual cause: makes a difference in death

occurence when it is present compared with when it is absent,
while all else is held constant.

(adapted from Parascandola and Weed (2001))
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Counterfactual outcomes
• outcome Y ∈ {0, 1}
• exposure E ∈ {0, 1}

Example: baby i died within a year (Yi = 1)
and its mother was smoking (Ei = 1)

• potential outcome Y E

had his mother not smoked, he would be alive (Y E=0
i = 0)

had his mother smoked, he would have died (Y E=1
i = 1)

Consistency assumption (well defined intervention)
Y E=e = y when observing outcome y under exposure e

△! not well defined when the outcome depends on other subject
exposure (e.g. risk of COVID without vaccination)
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Counterfactual definition of a causal effect
• Individual causal effect:

βi = Y E=1
i − Y E=0

i

"A cause of a disease event is an event [. . . ] without which the
disease event either would not have occurred at all or would not
have occurred until some later time" (Rothman and Greenland, 2005)

• Average causal effect:
(average the individual causal effect over the population)

β = E [βi ] = P
[
Y E=1 = 1

]
− P

[
Y E=0 = 1

]
Positivity assumption
Non-0 probability of receiving either treatment 16 / 55
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Average causal effect - illustration
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△! we only observe either Y E=0
i or Y E=1

i !
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Causal effect with stochastic events
Causal effect is modeled through change in distribution
(instead of value)

d
e
n
si
ty ATE
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Estimation of the average causal effect

Use the observed probability

β̂ = P [Y = 1|E = 1]− P [Y = 1|E = 0]

Exchangeability assumption
The actual exposure does not predict the
counterfactual outcome
Y E=e ⊥⊥ E

Are low BW babies of smokers vs non-smokers
exchangeable?

(Hernán, 2004)
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DAGs
graphical representation of a system of variables

graphical criteria for exchangeability
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Causal associations (1/2)
E Y

• changing E changes the distribution of Y
With the treatment, the risk of stroke is divided by 2
(distribution of "time to stroke" shifted toward longer
times)

X

E Y

• for at least one x , changing E changes the distribution of Y
when X is fixed at x .

With this preventive treatment, the risk of stroke:
- is divided by 2 for patients with diabetes

- unchanged otherwise
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Causal associations (2/2)

E M Y

• E changes the distribution of M; that change in distribution
of M changes the distribution of Y .

Preventive treatment
→ reduces your blood’s ability to clot
→ decreases the risk of stroke.
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Non-causal associations (Fork)
Causal: Getting older lead to higher risk of death and
gray hair.

• unconditional (open path)C

E Y
Non-causal: Gray hair is associated with a higher risk of
death.

• conditional (closed path)C

E Y
Causal: At a given age, there is no association between
gray hair and risk of death.
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Non-causal associations (Inverted Fork)
Causal: to be in this hospital (C), you must either have
diabetes (E) or prostate cancer (Y).

• unconditional (closed path)E Y

C
Causal: diabetes and prostate cancer are two unrealted
conditions

• conditional (open path)E Y

C
Non-causal: among in-hospital patient there is a
(negative) assocation between diabetes and prostate cancer

24 / 55
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DAG
Directed:
• each edge is oriented, i.e. represent a causal relationship.

Acyclic:
• does not contain any cycle

Graph:
• graphical representation composed of vertices (variables)

and edges (connection between variables).

Example:
A B

C D

is a DAG

but not A B C nor
A B

C D
25 / 55
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Nomenclature of the variables in a simple DAG
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What to control for?

We would like use Z to:
• leave all directed paths between E and Y unperturbed
• block all spurious paths between E and Y
• create no new spurious paths between E and Y

• Risk factor: yes - efficiency gain
• Confounder: yes - otherwise bias
• Collider: no - otherwise bias
• Mediator: depends on the question:
- adjustment: direct causal effect
- no adjustment: total causal effect
• Unrelated variable: if possible not

27 / 55
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Assessing the presence of confounding
C

E Y

So far:
• a priori knowledge to decide on confounding

(i.e. create the DAG)

What about using the data at hand?
• testing for C-Y or C-E association
• if not statistically significant . . .

• you can instead look at the confidence interval
(narrow around 0?)
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Analyzing complex DAGs
Here is a possible DAG for the birth weight paradox:

C
Low birth weight

U
Malnutrition

E
Smoking

Y
Death

Procedure to assess causality:
• list all undirected paths from E to Y
• decide whether it is or not a causal path
• check that: - all causal paths are open/unblocked

- all non-causal paths are closed/blocked
29 / 55
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DAGs path by path - conditional on smoking

C
Low birth weight

U
Malnutrition

E
Smoking

Y
Death

Path Type of path Status of the path

E → Y Causal Open
E → C → Y Causal Closed
E → C ← U → Y Non-causal Open

because
E → C ← U Non-causal Open
C ← U → Y Non-causal Open 30 / 55
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DAGs path by path - unconditional

C
Low birth weight

U
Malnutrition

E
Smoking

Y
Death

Path Type of path Status of the path

E → Y Causal Open
E → C → Y Causal Open
E → C ← U → Y Non-causal Closed

because
E → C ← U Non-causal Closed
C ← U → Y Non-causal Open
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DAGs path by path - adjustment

C
Low birth weight

U
Malnutrition

E
Smoking

Y
Death

Path Type of path Status of the path

E → Y Causal Open
E → C → Y Causal Closed
E → C ← U → Y Non-causal Closed

because
E → C ← U Non-causal Open
C ← U → Y Non-causal Closed 32 / 55
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Handling confounding using causal inference

U
Genetic

E
Smoking

M
Tar

Y
Cancer

Front door criteria

U
Confounder
(lifestyle)

Z
Instrument
(therapy)

E
Exposure
(smoking)

Y
Outcome
Weight

Instrumental variables

E0
?

L1
CD4(t=1)

E1
AZT(t=1)

Y
Death

U
Genetic

Time varying confounding
33 / 55
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Simpson paradox
Graduate school admissions to UC Berkeley, fall of 1973
(Bickel et al., 1975)
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• Are females less likely to be admitted than males? 34 / 55
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DAG of the Simpson paradox
Simpson paradox: confounding (+ collider)

Simplified graph:
Department

Applicant’s sex Admission

Full graph:
Decision to apply Department

Sex Admission

How to adjust for "Department" in the analysis? 35 / 55
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Controlling for confounding:
• by design
• using stratification

36 / 55
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Restriction

Only include participants with a specific value of a variable.
• DAG: condition on the variable, remove arrow to descendants

Example: only include females in the study

• done in nearly all studies. Balance between:
- controling confounding
- feasibility, generalizability

• control for known confounding
△! residual confounding is possible
△! make sure the variable is not a collider! Berkson paradox

37 / 55
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Randomization
The exposure is randomly allocated among participants
• DAG: "removes" all arrows directed to the exposure variable

Example:

C2 F

E Y

M

C1

becomes

Rando-
mization C2 F

E Y

M

C1

✔ control for known and unknown confounders

✘ can be complex/expensive/unethical to carry-out
38 / 55
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Over adjustment for confounding
After randomization, adjusting:
✔ on risk factors (e.g. C2, F ) may reduce the sampling error

(more efficient estimator)
✘ on colliders or mediators (e.g. M, C1) can lead to bias

"over adjustment"
→ be careful about post randomization variables

C2 F

E Y

M

C1

39 / 55
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"Full" stratification - example
Estimate the prevalence/incidence rate/risk for each exposure and
confounder value.

Female Male

Department NF DF π̂F NM DM π̂M

All 1835 557 30.35% 2691 1198 44.52%

becomes

Female Male

Department NF DF π̂F = DF
NF

NM DM π̂M = DM
NM

A 108 89 82.41% 825 512 62.06%
B 25 17 68% 560 353 63.04%
C 593 202 34.06% 325 120 36.92%
D 375 131 34.93% 417 138 33.09%
E 393 94 23.92% 191 53 27.75%
F 341 24 7.04% 373 22 5.9%

40 / 55
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"Full" stratification - strata-specific tests
Null hypothesis (H0)
• same probability for males and females in all strata

Alternative hypothesis (H1)
• probability for males and females differs in at least one strata

Intuitive test:
• reject the null if the difference in probability between men and

female is large in any strata 1

Dept. π̂F π̂M π̂F − π̂M p-value

adjusted p-value

A 82.41% 62.06% 20.35% 1.4 10−5

8.6 10−5

B 68% 63.04% 4.96% 0.88

1.0

C 34.06% 36.92% -2.86% 0.40

1.0

D 34.93% 33.09% 1.84% 0.60

1.0

E 23.92% 27.75% -3.83% 0.32

1.0

F 7.04% 5.9% 1.14% 0.59

1.0

1 could also be the ratio between probabilities is far away from 1 41 / 55
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1 could also be the ratio between probabilities is far away from 1 41 / 55
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Likelihood
Likelihood of observing the data given the model parameters, e.g.:

Female Male

Department NF DF π̂F NM DM π̂M

All 1835 557 30.35% 2691 1198 44.52%

L(πF , πM) = (πF )DF (1− πF )NF −DF (πM)DM (1− πM)NM−DM ∈ [0, 1]

• here a likelihood of 1 would indicate that our model perfectly
explain the data
• we usually look for the parameter value maximizing the

likelihood

42 / 55



Introduction Error decomposition Causality DAGs Controlling for confounding Conclusion

Likelihood
Likelihood of observing the data given the model parameters, e.g.:

Female Male

Department NF DF π̂F NM DM π̂M

All 1835 557 30.35% 2691 1198 44.52%

L(πF , πM) = (πF )DF (1− πF )NF −DF (πM)DM (1− πM)NM−DM ∈ [0, 1]

• here a likelihood of 1 would indicate that our model perfectly
explain the data
• we usually look for the parameter value maximizing the

likelihood
42 / 55



Introduction Error decomposition Causality DAGs Controlling for confounding Conclusion

"Full" stratification - Likelihood ratio test
Null hypothesis (H0)
• same probability for males and females in all strata
• L(Θ̂H0): likelihood under non-stratified model

Alternative hypothesis (H1)
• probability for males and females differs in at least one strata
• L(Θ̂H1): likelihood under stratified model

Likelihood ratio test (LRT)
• is the "fit" significantly better for the stratified model:

2
(
log

(
L(Θ̂H1)

)
− log

(
L(Θ̂H0)

))
large ?

Under H0, it follows a χ2
6: large means > 12.59 43 / 55
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"Manual" LRT (1/2)
• Likelihood under the alternative:

L(Θ̂H1) =
6∏

k=1

(
π̂

DF ,k
F ,k (1− π̂F ,k)NF ,k−DF ,k π̂

DM,k
M,k (1− π̂M,k)NM,k−DM,k

)
= (82.41%)89(1− 82.41%)108−89(62.06%)512(1− 62.06%)825−512

× . . .

× (7.04%)24(1− 7.04%)341−24(5.9%)373(1− 5.9%)373−22

• Likelihood under the null ( 89+512
108+825 ≈ 0.6441):

L(Θ̂H0) =
6∏

k=1

(
π̂Dk

k (1− π̂k)Nk−Dk
)

= (64.41%)601(1− 64.411%)933−601

× . . .

× (6.44%)46(1− 6.44%)714−46
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"Manual" LRT (2/2)
• log-likelihood under H0: log

(
L(Θ̂H0)

)
= −2594.5

• log-likelihood under H1: log
(
L(Θ̂H1)

)
= −2583.6

• Difference ("improvement"):

log
(
L(Θ̂H1)

)
− log

(
L(Θ̂H0)

)
= 10.9

• Test statistic:

2 ∗ log
(
L(Θ̂H1)

)
− 2 ∗ log

(
L(Θ̂H0)

)
= 21.7

• Significance threshold: 12.59
45 / 55
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Likelihood ratio test - In
Dataset (first three lines):
df[1:3,]

Gender Dept N D
1 Male A 825 512
2 Female A 108 89
3 Male B 560 353

Fit model under H0 and H1:
e.H1 <- glm(cbind(D,N-D) ∼ Gender*Dept,

data = df, family = binomial(link="logit"))
e.H0 <- glm(cbind(D,N-D) ∼ Dept,

data = df, family = binomial(link="logit"))

Likelihood ratio test:
anova(e.H0, e.H1, test = "LRT")

46 / 55
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"Full" stratification - summary

Estimating a separate effect in each strata is:
• a flexible approach - minimal assumptions
• not completely straightforward to interpret and report:
△! (possibly) different effect in each strata

Statistical inference
• strata-specific tests:

✔ intuitive, show in which strata rejection occured
✘ not optimal (in term of statistical power)

• likelihood ratio test:
✔ implemented in standard software
✘ can be hard to interpret - reason for rejection?

47 / 55
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"Common effect"
Simplified stratification:
• assume the same effect in all strata

Example with a multiplicative effect.

Statistical model:

Female Male

Department NF DF πF NM DM πM

A 108 89 β × πM,A 825 512 πM,A
B 25 17 β × πM,B 560 353 πM,B
C 593 202 β × πM,C 325 120 πM,C
D 375 131 β × πM,D 417 138 πM,D
E 393 94 β × πM,E 191 53 πM,E
F 341 24 β × πM,F 373 22 πM,F
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"Common effect"
Simplified stratification:
• assume the same effect in all strata

Example with a multiplicative effect.

Estimates: β̂ = 1.12, π̂A, ..., π̂F .

Female Male

Dep NF DF π̂F ̸= DF
NF

NM DM π̂M ̸= DM
NM

A 108 89 1.12 × 63.9% = 71.7% 825 512 63.9%
B 25 17 1.12 × 62.9% = 70.6% 560 353 62.9%
C 593 202 1.12 × 32.4% = 36.4% 325 120 32.4%
D 375 131 1.12 × 32.1% = 36.0% 417 138 32.1%
E 393 94 1.12 × 23.2% = 26.0% 191 53 23.2%
F 341 24 1.12 × 6.1% = 6.8% 373 22 6.1%

48 / 55



Introduction Error decomposition Causality DAGs Controlling for confounding Conclusion

Limitation of the multiplicative model

For the k − th strata, the probability is:
• πk in the "reference" group
• βπk in the other group

where β can be any positive number.

△! If β is large, then βπk can be above 1!
• use a multiplicative effect on the "odd scale" instead

Ωk = πM,k
1− πM,k

⇐⇒ πM,k = Ωk
1 + Ωk

βΩk = πF ,k
1− πF ,k

⇐⇒ πF ,k = βΩk
1 + βΩk

∈ [0, 1]
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Cochran–Mantel–Haenszel test (CMH)
Simplified stratification:
• assume the same effect in all strata

CMH: multiplicative odd effect

Female Male

Department NF DF πF NM DM πM

A 108 89 βΩA
1+βΩA

825 512 ΩA
1+ΩA

B 25 17 βΩB
1+βΩB

560 353 ΩB
1+ΩB

C 593 202 βΩC
1+βΩC

325 120 ΩC
1+ΩC

D 375 131 βΩD
1+βΩD

417 138 ΩD
1+ΩD

E 393 94 βΩE
1+βΩE

191 53 ΩE
1+ΩE

F 341 24 βΩF
1+βΩF

373 22 ΩF
1+ΩF

CMH models a common odd-ratio over the strata: β

50 / 55



Introduction Error decomposition Causality DAGs Controlling for confounding Conclusion

Estimation
Consider the sequence of 2 by 2 tables, one for each strata k:

Group
Outcome Rejected Admitted

Male ak = nM,k − DM,k bk = DM,k

Female ck = nF ,k − DF ,k dk = DF ,k

The common odd-ratio is estimated by:

ÔR
MH

=
∑K

k=1
akdk
nk∑K

k=1
bkck
nk

with nk = ak + bk + ck + dk the number of applicants per
department.
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Cochran–Mantel–Haenszel test - In
Dataset (vector of 2 by 2 tables)
str(UCBAdmissions)

’table’ num [1:2, 1:2, 1:6] 512 313 89 19 353 207 17 8 120 205 ...
- attr(*, "dimnames")=List of 3
..$ Admit : chr [1:2] "Admitted" "Rejected"
..$ Gender: chr [1:2] "Male" "Female"
..$ Dept : chr [1:6] "A" "B" "C" "D" ...

Test:
mantelhaen.test(UCBAdmissions[,2:1,])
## [,2:1,] to use males as reference

Mantel-Haenszel X-squared = 1.4269, df = 1, p-value = 0.2323
95 percent confidence interval:
0.9431028 1.2954922

common odds ratio
1.105343 52 / 55
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"Common effect" - summary

Reporting a single effect is convenient . . .

△! . . . but the "common effect" is a strong assumption. △!
Can be checked:
• looking at the effects in the "full" stratification
• using a statistical test (e.g. Breslow-Day Test or Woolf test)

Odds ratios:
• not very intuitive
• but have nice numerical properties when working with

probabilities

53 / 55
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Summing up
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What we have seen today
Definition of "a causal effect"
• consistency, positivity, exchangeability assumptions

Graphical representation of a study:
• reading and constructing DAGs
• definition of confounder, collider, mediator, risk factor
• using DAGs to decide what to adjust on

on the validity of a study

Controling for confounding:
• by design: randomization, restriction
• using a statistical method: stratification

- "full stratification" (flexible, strata-specific effects)
- "common effect" (assumption to be checked)55 / 55
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Definition of causality by Hume

"We may define a cause to be an object,
followed by another,
and where all the objects similar to the first
are followed by objects similar to the second.
Or in other words where,
if the first object had not been,
the second never had existed" (Hume 1748).
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One categorisation of causes (Pearce and Vandenbroucke, 2020)

△! Using the counterfactual framework to label as ’causal’
effects of fixed states is controversial.
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Nomenclature of the variables
• Risk factor: ancestor of only the outcome
• Confounder: ancestor of both the exposure and the outcome
• Collider: descendant of both the exposure2 and the outcome.
• Mediator: variable on a directed path relating the exposure

to the outcome.
• Unrelated variable: none of the previous

2 there must be a least one directed path relating the collider to the exposure
that does not contain the outcome 55 / 55
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