
Lecture 5: Dealing with confounding
DAGs and stratification

Key concepts

Brice Ozenne

1 Error decomposition
Every study invloves a parameter of interest (β, also called population parameter)
which we would like to estimate based on some data and a statistical method. For
a given statistical method, the estimated parameter β̂ will vary as a function of the
collected data and we will denote E

[
β̂

]
the expected estimated parameter.

Example:
- β is the true (but unknown) efficacy of a vaccine

- β̂ is the estimated efficacy of the vaccine based on a single study

- E
[
β̂

]
is (approximately) the average estimated efficacy of the vaccine over

multiple studies.

sample size: 50 sample size: 500
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The error made can be decomposed in two terms: β̂ − β = β̂ − E
[
β̂

]
︸ ︷︷ ︸

sampling error

+E
[
β̂

]
− β︸ ︷︷ ︸

bias

Bias: systematic difference between the estimated quantity and the population pa-
rameter. It is stable across replication studies.
Sampling error: fluctuation in the estimated quantity due to the finite number of
samples. It will differ from study to study.
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The sampling error can be reduced by increasing the sample size or pooling the
results from several replication studies. This is why we mostly worry about the bias:

• Confouding bias: fictitious association between the exposure and the out-
come resulting from a third variable.

Example: Simpson paradox
Birth control

Pregnancy Thrombosis

• Selection bias: bias arising when the observed data is a non-random sample
of the population. Typically the sampling probability is a function of the
outcome, e.g. patients who fully recovered or got very ill leave the study.

Example: Birth weight paradox

Smoking Malnutrition

Low birth weight

• Information bias: bias due to imperfect measurement of the exposure or the
outcome (measurement error).

Example: Attenuation bias
Bimomarker Outcome

Measurement

• Estimation bias: bias due to the use of an uncorrect statistical method or
approximations to facilitate the computations. In the latter case, "good" ap-
proximations lead to a consistent estimator, i.e. the bias vanishes as the sample
size increases.

△! In presence of confounding, the "naive" estimates can still cary some informa-
tion (e.g. for prediction) and be reported. However, they are not useful for assessing
the causal effect the exposure.

Example: the admission rate to UC Berkeley for the fall 1973 were higher
for men (41%) than for women (35%). These numbers are not helpful for deciding
whether there is gender discrimination as, with the data at hand, the sex-admission
assocation is confounded by the department in which the applicant applied.
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2 Graphical representation of a study

2.1 Directed acyclic graphs (DAGs)
Graph: graphical representation composed of composed of vertices (variables) and
edges (connection between variables).

Example: X Y Z and A B C are two graphs
(denoted G1 and G2).

(Undirected) path: sequence of edges linking two vertices.
Example: G2 contains 6 paths, e.g. X to Z, Z to X, Y to Z

Oriented edge: edge that has a starting vertex and a ending vertex.
Example: X Y is an oriented edge but A B is not.

Directed path: sequence of oriented edges linking two vertices. The ending vertex
of each edge must be the same as the starting vertex of the next edge.

Example: G1 contains 3 directed paths (X to Y , X to Z, and X to Z).

Ancestors of •: vertices where at least one directed path ending at • is starting.
Example: X has no ancestor but is an ancestor of Y and Z.

Descendants of •: vertices where at least one directed path starting at • is ending.
Example: Z has no descendant but is a descendant of X and Y .

Cycle: directed path where the starting vertex of the first edge is the ending vertex
of the last edge.

Example: the graph G3

A B

C D

contains a cycle.

DAG: a DAG is a graph containing no cycle and where each edge is oriented.
Example: G1 is a DAG but not G2 or G3.

Causal effect:1 directed path from X to Y . If the directed path contain no other
vertex, it correspond to a direct causal effect, otherwise to an indirect causal effect.

Example: In G1, X has a (direct) causal effect on Y

and an (indirect) causal effect on Z.
In G2 B A C , B has no causal effect on C.

1X has a causal effect on Y if the distribution of Y changes when only X changes (and its
descendants but only due the change of X).
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2.2 Nomenclature of the variables in a simple DAG
Given an exposure and outcome variable, we can now define:

• Risk factor: ancestor of only the outcome

• Confounder: ancestor of both the exposure and the outcome

• Collider: descendant of both the exposure2 and the outcome.

• Mediator: variable on a directed path relating the exposure to the outcome.

• Unrelated variable: none of the previous

– not related to the outcome and nor to the exposure
– only an ancestor or a descendant of the exposure
– only a descendant of the outcome

2there must be a least one directed path relating the collider to the exposure that does not
contain the outcome
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3 What to control for?
We would like to control for a set of variable Z in order to:

• leave all directed paths between E and Y unperturbed

• block all spurious paths between E and Y

• create no new spurious paths between E and Y

3.1 Simple DAG
• Risk factor: yes - less uncertainty on the estimate.

• Confounder: yes - otherwise biased estimate Simpson paradox

• Collider: no - otherwise biased estimate Selection bias/Bergson paradox

• Mediator: depends of the parameter of interest: Mediation analysis

– adjustment: direct causal effect
– no adjustment: total causal effect

• Unrelated variable: no - (slightly) more uncertainty on the estimate

△! In non linear models, adding a variable will likely affect the interpretation of a
parameter in the model (conditional effect). Standardisation can be used to recover
the parameter of interest (marginal effect).

3.2 Complex DAG
There is no confounding between X and Y when controling for Z if:

• no variable in Z is a descendent of X

• every path between X and Y is blocked - except the direct paths from X to Y

d-separation: the path between X and Y is blocked by Z if it either

• contain a collider that is not in Z (or its descendents)

• contain a non-collider that is in Z.

Note: using the d-seperation criteria requires that the DAG contains all parents
(first order ancestors) of any pair of variables.
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4 How to control for a set of variable?

4.1 Using a specific study design
• randomization: the exposure is randomly allocated among participants. This

"removes" all arrows directed to the exposure variable.

✔ control for known and unknown confounders (in large enough samples).

✔ can (usually) be analyzed with simple statistical methods.

✘ can be difficult to implement for ethical, logistical, or economical reason.

✘ not well suited to study rare events (would require a very large sample).

Example: the graph

C2 F

E Y

M

C1

becomes

C2 F

E Y

M

C1

when the exposure is randomized. An unadjusted analysis will lead to an unbiased
estimate. Care should be taken when adjusting for covariates:

- adjusting for C2 and F will lower the sampling error (more efficient estimator).

- adjusting for M or C1 may bias the analysis.

• restriction: only participants with a specific value of the (known) confounders
are included in the study (e.g. 50-year old females). Within the sample the
(known) confounders have no effect on the exposure nor on the outcome.

△! only controls for known confounders. Residual confounding due to un-
known confounders is possible.

△! almost impossible to implement exactly as it would lead to too restrictive
inclusion criteria. Instead, a range of values for the confounder is used
(e.g. age between 40 and 50). A narrow range means a better control of
the confounding but also more strigent inclusion criteria.

✔ can (usually) be analyzed with simple statistical methods.

Note: another commonly used approach is matching and will be presented later
in the course.
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4.2 Adjusting for confounding in the statistical analysis
We consider the case of a binary outcome Y , a binary exposure E, and a categorical
confounder C with K categories. We are interested in a parameter θ which can be
the prevalence, or the incidence rate, or the τ -years risk. We would like to test the
null hypothesis:

• H0: the parameter is the same for exposed and non-exposed in each strata

versus the alternative hypothesis:

• H1: the parameter is different for exposed and non-exposed in at least one
strata

The following table present three statistical models:
multiplicative

no effect "full" stratification "common effect" stratification
strata non-exposed exposed non-exposed exposed non-exposed exposed
1 θ1 θ1 θ0,1 θ1,1 θ1 βθ1
... ... ... ... ... ... ...
K θK θK θ0,K θ1,K θK βθK

We can assess the assocation between exposure and outcome by:

"Full" stratification: we estimate the (denoted θe,k) for each exposure e and con-
founder value c. When the group are independent, we can use the estimators intro-
duced in lecture 3. We can then:

• strata-specific tests: compare the estimates between exposure groups in each
strata: θ̂0,1 vs. θ̂1,1, . . . , θ0,K vs. θ1,K , using for instance risk difference and
associated confidence intervals (lecture 3). Evidence for any difference is evi-
dence against H0

△! remember to adjust for multiple comparisons when computing p-values or
confidence intervals

• likelihood ratio test: obtain a more powerful test by comparing the likelihood
of the no effect model and the "full" stratification model. A large difference in
likelihood is evidence for an association exposure-outcome3.

"Common effect" stratification: we assume a similar exposure effect in each
strata (denoted β) and a different parameter value in each strata (denoted θ1, . . . , θK).
We can then assess the exposure effect by testing whether there is evidence to reject
β = 1.

3in at least one strata but the test will not indicate which one(s).
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Example: for each strata k, we can create the following 2 × 3 table:

Group
Outcome

Survival Failure Time at risk

non-exposed ak bk T̃e,k

exposed ck dk T̃e,k

An alternative to the multiplicative model is to use the Cochran–Mantel–Haenszel
(CMH) test. It models a common odd-ratio over several strata:

ÔR
MH =

∑K
k=1

akdk
nk∑K

k=1
bkck
nk

where nk = ak + bk + ck + dk is the number of observations in the k-th strata.
Testing whether OR = 1 tests the presence of an association between outcome

and exposure. Under the null hypothesis, ÔR
MH

∼ χ2
K.

In chapter 15, Rothman et al. (2008) provides formula for the CMH applied to
the risk difference or risk ratio

R̂D
MH =

∑K
k=1

dk(ak+bk)−bk(ck+dk)
nk∑K

k=1
(ak+bk)(ck+dk)

nk

R̂R
MH =

∑K
k=1

dk(ak+bk)
nk∑K

k=1
bk(ck+dk)

nk

incidence rate difference or incidence rate ratio:

ÎRD
MH

=

∑K
k=1

dkT̃e,k−bkT̃e,k

T̃e,k+T̃e,k∑K
k=1

T̃e,kT̃e,k

T̃e,k+T̃e,k

ÎRR
MH =

∑K
k=1

dkT̃e,k

T̃e,k+T̃e,k∑K
k=1

bkT̃e,k

T̃e,k+T̃e,k

Corresponding formula for the variance of the estimator can be found in Rothman
et al. (2008).
The CMH estimate is more variable than the corresponding maximum likelihood
estimate. However it can be computed even with sparse data (i.e. ak, bk, ck,
dk, T̃e,k, or T̃e,k is 0).

Note 1: holding the confounder at a fixed value within strata "removes" the arrows
from the confounder to the exposure and outcome. Finer stratification leads to better
control for confounding but also sparser our data (within strata).

Note 2: other statstical approaches to handle confounding (inverse probability
weighting, G-formula) will be presented later in the course.

8



5 In
For illustration, we will use the following dataset:
data(Whickham, package = "mosaicData")
Whickham$ageC <- cut(Whickham$age, c(0,35,50,65,100))
summary(Whickham)

outcome smoker age ageC
Alive:945 No :732 Min. :18.00 (0,35] :430
Dead :369 Yes:582 1st Qu.:32.00 (35,50] :321

Median :46.00 (50,65] :334
Mean :46.92 (65,100]:229
3rd Qu.:61.00
Max. :84.00

5.1 Tables
• table to obtain perform a 2 by 2 table between the outcome (Y) and the

exposure (E) for each level of the confounder (C):

t23 <- table(Y = Whickham$outcome,
E = Whickham$smoker,
C = Whickham$ageC)

t23

, , C = (0,35]

E
Y No Yes

Alive 236 182
Dead 7 5

, , C = (35,50]

E
Y No Yes

Alive 126 155
Dead 13 27

, , C = (50,65]

E
Y No Yes

Alive 115 100
Dead 55 64

, , C = (65,100]

E
Y No Yes

Alive 25 6
Dead 155 43
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• ftable for a concise display

ftable(t23)

C (0,35] (35,50] (50,65] (65,100]
Y E
Alive No 236 126 115 25

Yes 182 155 100 6
Dead No 7 13 55 155

Yes 5 27 64 43

• stats::aperm to change the order of the entries in a table:

t23.bis <- aperm(t23,c(2,1,3))
ftable(t23.bis)
## same as
## ftable(E = Whickham$smoker, Y = Whickham$outcome, C = Whickham$ageC)

C (0,35] (35,50] (50,65] (65,100]
E Y
No Alive 236 126 115 25

Dead 7 13 55 155
Yes Alive 182 155 100 6

Dead 5 27 64 43

5.2 Estimating odd ratios from aggregated data
• by hand, one at a time

a <- t23.bis["No","Alive","(0,35]"]
b <- t23.bis["No","Dead","(0,35]"]
c <- t23.bis["Yes","Alive","(0,35]"]
d <- t23.bis["Yes","Dead","(0,35]"]
(a*d)/(b*c)

[1] 0.9262166

10



• by hand, all at once

vec.a <- t23.bis["No","Alive",]
vec.b <- t23.bis["No","Dead",]
vec.c <- t23.bis["Yes","Alive",]
vec.d <- t23.bis["Yes","Dead",]
(vec.a*vec.d)/(vec.b*vec.c)

(0,35] (35,50] (50,65] (65,100]
0.9262166 1.6883375 1.3381818 1.1559140

• by hand, using the apply function to perform arbitrary computation within
each strata. The argument MARGIN indicate on which dimension of the table
we want to repeatedly apply the calculations defined by the argument FUN (x
is an abstract representation of a given 2 by 2 table):

apply(t23.bis, MARGIN = 3,
FUN = function(x){

r1 <- x["No","Dead"]/(x["No","Alive"]+x["No","Dead"])
r2 <- x["Yes","Dead"]/(x["Yes","Alive"]+x["Yes","Dead"])

out <- c("risk(No)" = r1,
"risk(Yes)" = r2,
"risk difference" = r2-r1,
"risk ratio" = r2/r1,
"odds ratio(risk)" = (r2/(1-r2))/(r1/(1-r1))
)

return(out)
})

C
(0,35] (35,50] (50,65] (65,100]

risk(No) 0.028806584 0.09352518 0.32352941 0.86111111
risk(Yes) 0.026737968 0.14835165 0.39024390 0.87755102
risk difference -0.002068616 0.05482647 0.06671449 0.01643991
risk ratio 0.928189458 1.58622147 1.20620843 1.01909151
odds ratio(risk) 0.926216641 1.68833747 1.33818182 1.15591398
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• using a dedicated package like vcd::loddsratio (the argument correct would
add 0.5 to each cell to handle empty cells):

library(vcd)
loddsratio(t23, log = FALSE, correct = FALSE)

odds ratios for Y and E by C

(0,35] (35,50] (50,65] (65,100]
0.9262166 1.6883375 1.3381818 1.1559140

• stats::mantelhaen.test to perform a Cochran-Mantel-Haenszel test and es-
timate a common odds ratio 4

mantelhaen.test(t23)

Mantel-Haenszel chi-squared test with continuity correction

data: t23
Mantel-Haenszel X-squared = 2.7287, df = 1, p-value = 0.09856
alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:
0.9623196 1.8830784

sample estimates:
common odds ratio

1.346151

• DescTools::BreslowDayTest or vcd::woolf_test to check the assumption
of homogeneity of the odds ratios across strata:
(the usefulness of this test is questionable as it does not indicates how important
the heterogeneity is)

library(DescTools)
BreslowDayTest(t23)

Breslow-Day test on Homogeneity of Odds Ratios

data: t23
X-squared = 0.9007, df = 3, p-value = 0.8253

4The metafor::rma.mh implements the Cochran-Mantel-Haenszel test for risk difference, risk
ratio, incidence rate ratio, incidence rate difference (△! I haven’t tested it)
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5.3 Estimating odd ratios from individual data
• using glm to fit a logistic regression (with the argument family=binomial(link="logit"))

## full stratification
e.strata <- glm(outcome ∼ ageC + ageC:smoker,

data = Whickham, family = binomial(link="logit"))
## names of the coefficients containing the character smoker
name.coefsmoker <- grep("smoker",names(coef(e.strata)), value = TRUE)
exp(coef(e.strata)[name.coefsmoker])

ageC(0,35]:smokerYes ageC(35,50]:smokerYes ageC(50,65]:smokerYes
0.9262166 1.6883375 1.3381818

ageC(65,100]:smokerYes
1.1559140

## common effect stratification
e.common <- glm(outcome ∼ ageC + smoker,

data = Whickham, family = binomial(link="logit"))
exp(coef(e.common)["smokerYes"])

smokerYes
1.346148

• anova to perform a likelihood ratio test between two logistic regressions (with
the argument test = "LRT")

e.H0 <- glm(outcome ∼ ageC,
data = Whickham, family = binomial(link="logit"))

LRT.strata <- anova(e.strata, e.H0, test = "LRT")
LRT.common <- anova(e.common, e.H0, test = "LRT")
c("full stratification" = LRT.strata["Pr(>Chi)"][2,1],

"common effect stratification" = LRT.common["Pr(>Chi)"][2,1])

full stratification common effect stratification
0.41220871 0.08083229
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• display fitted values, i.e. fitted probability for each age and smoking status:

grid <- unique(Whickham[,c("ageC","smoker")])
grid$fit.H0 <- 100*predict(e.H0, newdata=grid, type="response")
grid$fit.common <- 100*predict(e.common, newdata=grid, type="response")
grid$fit.strata <- 100*predict(e.strata, newdata=grid, type="response")
print(grid, digits = 2)

ageC smoker fit.H0 fit.common fit.strata
1 (0,35] Yes 2.8 3.3 2.7
3 (65,100] Yes 86.5 89.0 87.8
4 (65,100] No 86.5 85.8 86.1
5 (50,65] No 35.6 32.3 32.4
6 (35,50] Yes 12.5 13.8 14.8
9 (0,35] No 2.8 2.4 2.9
26 (35,50] No 12.5 10.7 9.4
35 (50,65] Yes 35.6 39.1 39.0

5.4 Visualizing heterogeneity
First extract the log odd ratios:
df.strata <- data.frame(name = gsub(":smokerYes","",name.coefsmoker),

estimate = coef(e.strata)[name.coefsmoker],
lower = confint(e.strata)[name.coefsmoker,1],
upper = confint(e.strata)[name.coefsmoker,2])

df.strata

Waiting for profiling to be done...
Waiting for profiling to be done...

name estimate lower upper
ageC(0,35]:smokerYes ageC(0,35] -0.07664712 -1.3082302 1.0812790
ageC(35,50]:smokerYes ageC(35,50] 0.52374430 -0.1610087 1.2543342
ageC(50,65]:smokerYes ageC(50,65] 0.29131184 -0.1570201 0.7423584
ageC(65,100]:smokerYes ageC(65,100] 0.14489135 -0.7522483 1.1850019

and the common odd ratio:
df.common <- data.frame(name = "common",

estimate = coef(e.common)["smokerYes"],
lower = confint(e.common)["smokerYes",1],
upper = confint(e.common)["smokerYes",2])

df.common
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Waiting for profiling to be done...
Waiting for profiling to be done...

name estimate lower upper
smokerYes common 0.2972473 -0.03625327 0.6356513

Combine both datasets and take the exponential to obtain odd ratios:
df.all <- rbind(df.strata, df.common)
df.all$estimate <- exp(df.all$estimate)
df.all$lower <- exp(df.all$lower)
df.all$upper <- exp(df.all$upper)

Display the results, e.g. using ggplot:
library(ggplot2)
gg <- ggplot(df.all, aes(x = name, y = estimate, ymin = lower, ymax =

upper))
gg <- gg + geom_point() + geom_errorbar() + ylab("Odd ratio (smoker)") +

xlab("")
gg <- gg + coord_cartesian(ylim = c(0,3.5))
gg
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