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Estimating the causal effect of some exposure on some
outcome is the goal of many epidemiological studies. This
article reviews a formal definition of causal effect for such
studies. For simplicity, the main description is restricted to
dichotomous variables and assumes that no random error
attributable to samphng vorlqblhty exists. The qppendlx
provides a discussion of sampling variability and a
generalisation of this causal theory. The difference between
association and causation is described—the redundant
expression "‘causal effect’” is used throughout the article to
avoid confusion with a common use of “effect’ meaning
simply statistical association—and shows why, in theory,
randomisation allows the estimation of causal effects
without further assumptions. The article concludes with a
discussion on the limitations of randomised studies. These
limitations are the reason why methods for causal inference
from observational data are needed.
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INDIVIDUAL CAUSAL EFFECTS

Zeus is a patient waiting for a heart transplant.
On 1 January, he received a new heart. Five days
later, he died. Imagine that we can somehow
know, perhaps by divine revelation, that had
Zeus not received a heart transplant on 1 January
(all others things in his life being unchanged)
then he would have been alive five days later.
Most people equipped with this information
would agree that the transplant caused Zeus’
death. The intervention had a causal effect on
Zeus’ five day survival.

Another patient, Hera, received a heart trans-
plant on 1 January. Five days later she was alive.
Again, imagine we can somehow know that had
Hera not received the heart on 1 January (all
other things being equal) then she would still
have been alive five days later. The transplant did
not have a causal effect on Hera’s five day
survival.

These two vignettes illustrate how human
reasoning for causal inference works: we com-
pare (often only mentally) the outcome when
action A is present with the outcome when action
A is absent, all other things being equal. If the
two outcomes differ, we say that the action A has
a causal effect, causative or preventive, on the
outcome. Otherwise, we say that the action A has
no causal effect on the outcome. In epidemiol-
ogy, A is commonly referred to as exposure or
treatment.

The next step is to make this causal intuition
of ours amenable to mathematical and statistical
analysis by introducing some notation. Consider
a dichotomous exposure variable A (1: exposed,
0: unexposed) and a dichotomous outcome
variable ¥ (1: death, 0: survival). Table 1 shows
the data from a heart transplant observational
study with 20 participants. Let Y,_; be the
outcome variable that would have been observed
under the exposure value a=1, and Y,_, the
outcome variable that would have been observed
under the exposure value a =0. (Lowercase a
represents a particular value of the variable A.)
As shown in table 2, Zeus has Y,_,=1 and
Y,-0=0 because he died when exposed but
would have survived if unexposed.

We are now ready to provide a formal
definition of causal effect for each person:
exposure has a causal effect if Y,_o#Y,—.
Table 2 is all we need to decide that the exposure
has an effect on Zeus” outcome because
Y, - 0#Y, -, but not on Hera’s outcome because
Y,—0="Y,-1. When the exposure has no causal
effect for any subject—that is, Y,_o=Y,_, for
all subjects—we say that the sharp causal null
hypothesis is true.

The variables Y,_; and Y,_, are known as
potential outcomes because one of them
describes the subject’s outcome value that would
have been observed under a potential exposure
value that the subject did not actually experi-
ence. For example, ¥, _ is a potential outcome
for exposed Zeus, and Y,_, is a potential
outcome for unexposed Hera. Because these
outcomes would have been observed in situa-
tions that did not actually happen (that is, in
counter to the fact situations), they are also
known as counterfactual outcomes. For each sub-
ject, one of the counterfactual outcomes is
actually factual—the one that corresponds to
the exposure level or treatment regimen that the
subject actually received. For example, if A =1
for Zeus, then Y,_, =Y, _ 4, =Y for him.

The fundamental problem of causal inference
should now be clear. Individual causal effects are
defined as a contrast of the values of counter-
factual outcomes, but only one of those values is
observed. Table 3 shows the observed data and
each subject’s observed counterfactual outcome:
the one corresponding to the exposure value
actually experienced by the subject. All other
counterfactual outcomes are missing. The
unhappy conclusion is that, in general, indivi-
dual causal effects cannot be identified because
of missing data.

POPULATION CAUSAL EFFECT
We define the probability Pr[Y,=1] as the
proportion of subjects that would have developed
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Table 1 Data from a study with dichotomous exposure A Table 2 Counterfactual outcomes of subjects in a study
and outcome Y with dichotomous exposure A and outcome Y
D A % ID Yoo Yoo
Rheia 0 0 Rheia 0 1
Kronos 0 1 Kronos 1 0
Demeter 0 0 Demeter 0 0
Hades 0 0 Hades 0 0
Hestia 1 0 Hestia 0 0
Poseidon 1 0 Poseidon 1 0
Hera 1 0 Hera 0 0
Zeus 1 1 Zeus 0 1
Artemis 0 1 Artemis 1 1
Apollo 0 1 Apollo 1 0
Circe 0 0 Circe 0 1
Ares 1 1 Ares 1 1
Athene 1 1 Athene 1 1
Eros 1 1 Eros 0 1
Aphrodite 1 1 Aphrodite 0 1
Prometheus 1 1 Prometheus 0 1
Selene 1 1 Selene 1 1
Hermes 1 0 Hermes 1 0
Eos 1 0 Eos 1 0
Helios 1 0 Helios 1 0
the outcome Y had all subjects in the population of interest (b) Pr[Yo—,=1]/Pr[Y,=o=1]#1

received exposure value a. We also refer to Pr[Y, = 1] as the
risk of ¥,. The exposure has a causal effect in the population
if Pr[Y,—,=11#Pr[V,—o=1].

Suppose that our population is comprised by the sub-
jects in table 2. Then Pr[Y,—,=1]=10/20=0.5, and
Pr[Y,—o=1]=10/20=0.5. That is, 50% of the patients
would have died had everybody received a heart transplant,
and 50% would have died had nobody received a heart
transplant. The exposure has no effect on the outcome at the
population level. When the exposure has no causal effect in
the population, we say that the causal null hypothesis is true.

Unlike individual causal effects, population causal effects
can sometimes be computed—or, more rigorously, consis-
tently estimated (see appendix)—as discussed below.
Hereafter we refer to the “‘population causal effect” simply
as ‘““causal effect”. Some equivalent definitions of causal
effect are

(@) Pr[Y,_,=1]-Pr[Y,_,=1]#0

() (Pr[Y,—1=1]/Pr[Y,-1=0])/(Pr[Y,—9=1]/
Pr[Y,_o=0])%1

where the left hand side of inequalities (a), (b), and (c) is the
causal risk difference, risk ratio, and odds ratio, respectively.
The causal risk difference, risk ratio, and odds ratio (and
other causal parameters) can also be used to quantify the
strength of the causal effect when it exists. They measure the
same causal effect in different scales, and we refer to them as
effect measures.

ASSOCIATION AND CAUSATION

To characterise association, we first define the probability
Pr[Y = 1|A =a] as the proportion of subjects that developed
the outcome Y among those subjects in the population
of interest that happened to receive exposure value a. We
also refer to Pr[Y=1|A=a] as the risk of Y given
A=a. Exposure and outcome are associated if
Pr(Y=1|A=1]#Pr[Y=1|A=0]. In our population of

Table 3 Data and observed counterfactual outcomes from a study with dichotomous
exposure A and outcome Y

D A Y Yoco Yoor
Rheia 0 0 0 ?
Kronos 0 1 1 ?
Demeter 0 0 0 ?
Hades 0 0 0 ?
Hestia 1 0 ? 0
Poseidon 1 0 ? 0
Hera 1 0 ? 0
Zeus 1 1 ? 1
Artemis 0 1 1 ?
Apollo 0 1 1 ?
Circe 0 0 0 ?
Ares 1 1 ? 1
Athene 1 1 ? 1
Eros 1 1 ? 1
Aphrodite 1 1 ? 1
Prometheus 1 1 ? 1
Selene 1 1 ? 1
Hermes 1 0 ? 0
Eos 1 0 ? 0
Helios 1 0 ? 0
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table 1, exposure and outcome are associated because
Pr[Y=1|A=1]=7/13, and Pr[Y=1|A=0]=3/7. Somec
equivalent definitions of association are

(a) Pr[Y=1]A=1]-Pr[Y=1|A=0]#0

(b) Pr[Y=1]|A=1]/Pr[Y=1]A=0]#1

() (Pr[Y=1|A=1]/Pr[Y=0]|A=1])/(Pr[Y=1]4 =0}/
Pr{¥ =0]4 = 0])#1

where the left hand side of the inequalities (a), (b), and (c) is
the associational risk difference, risk ratio, and odds ratio,
respectively. The associational risk difference, risk ratio, and
odds ratio (and other association parameters) can also be
used to quantify the strength of the association when it
exists. They measure the same association in different scales,
and we refer to them as association measures.

When A and Y are not associated, we say that A does not
predict ¥, or vice versa. Lack of association is represented by
YIJA (or, equivalently, A[]Y), which is read as ¥ and A are
independent.

Note that the risk Pr[Y = 1|4 =a] is computed using the
subset of subjects of the population that meet the condition
“having actually received exposure a’ (that is, it is a
conditional probability), whereas the risk Pr[¥,=1] is
computed using all subjects of the population had they
received the counterfactual exposure a (that is, it is an
unconditional or marginal probability). Therefore, association
is defined by a different risk in two disjoint subsets of the
population determined by the subjects” actual exposure value,
whereas causation is defined by a different risk in the same
subset (for example, the entire population) under two
potential exposure values (fig 1). This radically different
definition accounts for the well known adage ““association is
not causation.” When an association measure differs from
the corresponding effect measure, we say that there is bias or
confounding.

COMPUTATION OF CAUSAL EFFECTS VIA
RANDOMISATION

Unlike association measures, effect measures cannot be
directly computed because of missing data (see table 3).
However, effect measures can be computed—or, more
rigorously, consistently estimated (see appendix)—in rando-
mised experiments.

Suppose we have a (near-infinite) population and that we
flip a coin for each subject in such population. We assign the
subject to group 1 if the coin turns tails, and to group 2 if it
turns heads. Next we administer the treatment or exposure of

Observed population

Unexposed Exposed

Causation Association

O-@ b

Figure 1 Causation is defined by a different risk in the entire
Eopu|aiion under two potential exFosure values; association is defined
y a different risk in the subsets of the population determined by the

subjects” actual exposure value.
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interest (A = 1) to subjects in group 1 and placebo (A = 0) to
those in group 2. Five days later, at the end of the study, we
compute the mortality risks in each group, Pr[Y=1|4=1]
and Pr[Y=1|A=0]. For now, let us assume that this
randomised experiment is ideal in all other respects (no loss
to follow up, full compliance with assigned treatment, blind
assignment).

We will show that, in such a study, the observed risk
Pr[Y = 1|A =a] is equal to the counterfactual risk Pr[Y, = 1],
and therefore the associational risk ratio equals the causal
risk ratio.

First note that, when subjects are randomly assigned to
groups 1 and 2, the proportion of deaths among the exposed,
Pr[Y = 1|A = 1], will be the same whether subjects in group 1
receive the exposure and subjects in group 2 receive placebo,
or vice versa. Because group membership is randomised, both
groups are ‘“‘comparable”: which particular group got the
exposure is irrelevant for the value of Pr[Y=1]A =1]. (The
same reasoning applies to Pr[Y = 1|A = 0].) Formally, we say
that both groups are exchangeable.

Exchangeability means that the risk of death in group 1
would have been the same as the risk of death in group 2 had
subjects in group 1 received the exposure given to those in
group 2. That is, the risk under the potential exposure value a
among the exposed, Pr[Y, =1]A = 1], equals the risk under
the potential exposure value a among the unexposed,
Pr[Y,=1|A=0], fora=0anda= 1. An obvious consequence
of these (conditional) risks being equal in all subsets defined
by exposure status in the population is that they must be
equal to the (marginal) risk under exposure value a in the
whole population: Pr[Y,=1|A=1]=Pr[Y,=1|A=0]=Pr
[V, =1]. In other words, under exchangeability, the actual
exposure does not predict the counterfactual outcome; they
are independent, or Y, []A for all values a. Randomisation
produces exchangeability.

We are only one step short of showing that the observed
risk Pr[Y = 1|4 = a] equals the counterfactual risk Pr[Y, = 1]
in ideal randomised experiments. By definition, the value of
the counterfactual outcome Y, for subjects who actually
received exposure value a is their observed outcome value Y.
Then, among those who actually received exposure value a,
the risk under the potential exposure value a is trivially equal
to the observed risk. That is, Pr[Y,=1|A=a]=Pr
[Y=1]4=a].

Let us now combine the results from the two previous
paragraphs. Under exchangeability, ¥, [T 4 for all 4, the con-
ditional risk among those exposed to a is equal to the
marginal risk had the whole population been exposed to a:
Pr[Y,=1|A=1]=Pr[V,=1|A=0]=Pr[V,=1]. And by
definition of counterfactual outcome Pr[Y,=1|A=a]=Pr
[Y =1|A =a]. Therefore, the observed risk Pr[Y=1|A=a]
equals the counterfactual risk Pr[Y, = 1]. In ideal randomised
experiments, association is causation. On the other hand, in
non-randomised (for example, observational) studies asso-
ciation is not necessarily causation because of potential lack
of exchangeability of exposed and unexposed subjects. For
example, in our heart transplant study, the risk of death
under no treatment is different for the exposed and the
unexposed: Pr[¥,_o=1|A=1]=7/13#Pr[Y,_o=1|A=0]=
3/7. We say that the exposed had a worse prognosis, and
therefore a greater risk of death, than the unexposed, or
that ¥, I] A does not hold for a =0.

INTERVENTIONS AND CAUSAL QUESTIONS

We have so far assumed that the counterfactual outcomes Y,

exist and are well defined. However, that is not always the case.
Suppose women (S=1) have a greater risk of certain

disease Y than men (S=0)—that is, Pr[Y=1|S=1]>

Pr[Y=1|S=0]. Does sex S has a causal effect on the risk
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of Y—that is, Pr[Yy—, = 1]>Pr[Y;_-,=1]? This question is
quite vague because it is unclear what we mean by the risk of
Y had everybody been a woman (or a man). Do we mean the
risk of Y had everybody “carried a pair of X chromosomes”’,
“been brought up as a woman”, “had female genitalia”, or
“had high levels of oestrogens between adolescence and
menopausal age”? Each of these definitions of the exposure
“female sex”” would lead to a different causal effect.

To give an unambiguous meaning to a causal question, we
need to be able to describe the interventions that would allow
us to compute the causal effect in an ideal randomised
experiment. For example, “administer 30 pg/day of ethinyl
estradiol from age 14 to age 45" compared with ““administer
placebo.” That some interventions sound technically unfea-
sible or plainly crazy simply indicates that the formulation of
certain causal questions (for example, the effect of sex, high
serum LDL-cholesterol, or high HIV viral load on the risk of
certain disease) is not always straightforward. A counter-
factual approach to causal inference highlights the impreci-
sion of ambiguous causal questions, and the need for a
common understanding of the interventions involved.

LIMITATIONS OF RANDOMISED EXPERIMENTS

We now review some common methodological problems that
may lead to bias in randomised experiments. To fix ideas,
suppose we are interested in the causal effect of a heart
transplant on one year survival. We start with a (near-
infinite) population of potential recipients of a transplant,
randomly allocate each subject in the population to either
transplant (4 = 1) or medical treatment (4 = 0), and ascer-
tain how many subjects die within the next year (Y=1) in
each group. We then try to measure the effect of heart
transplant on survival by computing the associational risk
ratio Pr[Y=1|A =1]/Pr[Y = 1|A = 0], which is theoretically
equal to the causal risk ratio Pr[Y,_,=1]/Pr[Y,—o=1].
Consider the following problems:

® [oss to follow up. Subjects may be lost to follow up or drop
out of the study before their outcome is ascertained. When
this happens, the risk Pr[Y = 1|4 = a] cannot be computed
because the value of Y is not available for some people.
Instead we can compute Pr[Y =1]|A=a, C=0] where C
indicates whether the subject was lost (1: yes, 0: no). This
restriction to subjects with C =0 is problematic because
subjects that were lost (C=1) may not be exchangeable
with subjects who remained through the end of the study
(C=0). For example, if subjects who did not receive a
transplant (A =0) and who had a more severe disease
decide to leave the study, then the risk Pr[Y=1]|4 =0,
C = 0] among those remaining in the study would be lower
than the risk Pr[Y=1]|A=0] among those originally
assigned to medical treatment. Our association measure
PriY=1|A=1, C=0]/Pr[Y=1]|A=0, C=0] would not
generally equal the effect measure Pr[Y,_-,=1]/
Pr[Y,_o=1].

® Non-compliance. Subjects may not adhere to the assigned
treatment. Let A be the exposure to which subjects were
randomly assigned, and B the exposure they actually
received. Suppose some subjects that had been assigned to
medical treatment (4 =0) obtained a heart transplant
outside of the study (B=1). In an “intention to treat”
analysis, we compute Pr[Y=1|A=a], which equals
Pr[Y, = 1]. However, we are not interested in the causal
effect of assignment A, a misclassified version of the
true exposure B, but on the causal effect of B itself. The
alternative “as treated”” approach—using Pr[Y =1|B =]
for causal inference—is problematic. For example, if
the most severely ill subjects in the A =0 group seek a
heart transplant (B =1) outside of the study, then the
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group B=1 would include a higher proportion of
severely ill subjects than the group B=0. The groups
B=1 and B=0 would not be exchangeable—that is,
Pr[Y = 1|B =b]#Pr[Y, = 1]. In the presence of non-com-
pliance, an intention to treat analysis guarantees exchange-
ability of the groups defined by a misclassified exposure
(the original assignment), whereas an as treated analysis
guarantees a correct classification of exposure but not
exchangeability of the groups defined by this exposure.
However, the intention to treat analysis is often preferred
because, unlike the as treated analysis, it provides an
unbiased association measure if the sharp causal null
hypothesis holds for the exposure B.

® Unblinding. When the study subjects are aware of the
treatment they receive (as in our heart transplant study),
they may change their behaviour accordingly. For exam-
ple, those who received a transplant may change their diet
to keep their new heart healthy. The equality
Pr[Y =1|A =a] = Pr[Y, = 1] still holds, but now the causal
effect of A combines the effects of the transplant and the
dietary change. To avoid this problem, knowledge of the
level of exposure assigned to each group is withheld from
subjects and their doctors (they are ‘“blinded”), when
possible. The goal is to ensure that the whole effect, if any,
of the exposure assignment A is solely attributable to the
exposure received B (the heart transplant in our example).
When this goal is achieved, we say that the exclusion
restriction holds—that is, Y, -0, =Y,-1, for all subjects
and all values b and, specifically, for the value B observed
for each subject. In non-blinded studies, or when blinding
does not work (for example, the well known side effects of
a treatment make apparent who is taking it), the exclusion
restriction cannot be guaranteed, and therefore the
intention to treat analysis may not yield an unbiased
association measure even under the sharp causal null
hypothesis for exposure B.

In summary, the fact that exchangeability ¥, [T A holds in
a well designed randomised experiment does not guarantee
an unbiased estimate of the causal effect because: 7) ¥ may
not be measured for all subjects (loss to follow up), ii) A may
be a misclassified version of the true exposure (non-
compliance), and iii) A may be a combination of the exposure
of interest plus other actions (unblinding). Causal inference
from randomised studies in the presence of these problems
requires similar assumptions and analytical methods as
causal inference from observational studies.

Leaving aside these methodological problems, randomised
experiments may be unfeasible because of ethical, logistic, or
financial reasons. For example, it is questionable that an
ethical committee would have approved our heart transplant
study. Hearts are in short supply and society favours
assigning them to subjects who are more likely to benefit
from the transplant, rather than assigning them randomly
among potential recipients. Randomised experiments of
harmful exposures (for example, cigarette smoking) are
generally unacceptable too. Frequently, the only option is
conducting observational studies in which exchangeability is
not guaranteed.

BIBLIOGRAPHICAL NOTES

Hume' hinted a counterfactual theory of causation, but the
application of counterfactual theory to the estimation of
causal effects via randomised experiments was first formally
proposed by Neyman.? Rubin’ * extended Neyman'’s theory to
the estimation of the effects of fixed exposures in randomised
and observational studies. Fixed exposures are exposures that
cither are applied at one point in time only or never change
over time. Examples of fixed exposures in epidemiology
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are a surgical intervention, a traffic accident, a one dose
immunisation, or a medical treatment that is continuously
administered during a given period regardless of its efficacy
or side effects. Rubin’s counterfactual model has been
discussed by Holland and others.?

Robins® 7 proposed a more general counterfactual model
that permits the estimation of total and direct effects of fixed
and time varying exposures in longitudinal studies, whether
randomised or observational. Examples of time varying
exposures in epidemiology are a medical treatment, diet,
cigarette smoking, or an occupational exposure. For simpli-
city of presentation, our article was restricted to the effects of
fixed exposures. The use of the symbol ] to denote
independence was introduced by Dawid.®
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APPENDIX

A1 SAMPLING VARIABILITY

Our descriptions of causal effect and exchangeability have
relied on the idea that we somehow collected information
from all the subjects in the population of interest. This
simplification has been useful to focus our attention on the
conceptual aspects of causal inference, by keeping them
separate from aspects related to random statistical variability.
We now extend our definitions to more realistic settings in
which random variability exists.

Many real world studies are based on samples of the
population of interest. The first consequence of working with
samples is that, even if the counterfactual outcomes of all
subjects in the study were known, one cannot obtain the
exact proportion of subjects in the population who had the
outcome under exposure value a—that is, the probability
Pr[Y,_-o=1] cannot be directly computed. One can only
estimate this probability. Consider the subjects in table 2. We
have previously viewed them as forming a 20 person
population. Let us now view them as a random sample of a
much larger population. In this sample, the proportion of
subjects who would have died if unexposed is Pr[¥,_o=1]
= 10/20 = 0.5, which does not have to be exactly equal to the
proportion of subjects who would have died if the entire
population had been unexposed, Pr[Y,_-,=1]. We use the
sample proportion Pr[Y,=1] to estimate the population
probability Pr[¥,=1]. (The “hat” over Pr indicates that
Pr[Y,=1] is an estimator.) We say that Pr{y,=1] is a
consistent estimator of Pr[Y, = 1] because the larger the number
of subjects in the sample, the smaller the difference between
Pr[Y,=1] and Pr[Y, = 1] is expected to be. In the long run
(that is, if the estimator is applied to infinite samples of the
population), the mean difference is expected to become zero.

There is a causal effect of A on Y in such population if
Pr[Y,—, = 1]#Pr[Y, -, = 1]. This definition, however, cannot
be directly applied because the population probabilities
Pr[YV,=1] cannot be computed, but only consistently
estimated by the sample proportions Pr[Y, = 1]. Therefore,
one cannot conclude with certainty that there is (or there is
not) a causal effect. Rather, standard statistical procedures

are needed to test the «causal null hypothesis
Pr[Y,-,=1]=Pr[Y,-o=1] by comparing Pr[Y,_; =1] and
Pr[Y,—; =1], and to compute confidence intervals for the

effect measures. The availability of data from only a sample
of subjects in the population, even if the values of all their
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counterfactual outcomes were known, is the first reason why
statistics is necessary in causal inference.

The previous discussion assumes that one can have access
to the values of both counterfactual outcomes for each
subject in the sample (as in table 2), whereas in real world
studies one can only access the value of one counterfactual
outcome for each subject (as in table 3). Therefore, whether
one is working with the whole population or with a sample,
neither the probability Pr[Y,=1] or its consistent
estimator Pr[Y, = 1] can be directly computed for any value
a. Instead, one can compute the sample proportion of
subjects that develop the outcome among the exposed,
Prly=1|A=1]=7/13, and among the unexposed,
Pr[Y=1|4=0]=3/7. There are two major conceptualisa-
tions of this problem:

(1) The population of interest is near infinite and we
hypothesise that all subjects in the population are randomly
assigned to either A=1 or A=0. Exchangeability of the
exposed and unexposed would hold in the population—that
is, Pr[Y, = 1] =Pr[Y =1|A =a]. Now we can see our sample
as a random sample from this population where exposure is
randomly assigned. The problem boils down to standard
statistical inference with the sample proportion
Pr[Y = 1|4 =a] being a consistent estimator of the popula-
tion probability Pr[Y=1|A =a]. This is the simplest con-
ceptualisation.

(2) Only the subjects in our sample, not all subjects in the
entire population, are randomly assigned to either A =1 or
A = 0. Because of the presence of random sampling varia-
bility, we do not expect that exchangeability will exactly hold
in our sample. For example, suppose that 100 subjects are
randomly assigned to either heart transplant (A=1) or
medical treatment (A = 0). Each subject can be classified as
good or bad prognosis at the time of randomisation. We say
that the groups A=0 and A=1 are exchangeable if they
include exactly the same proportion of subjects with bad
prognosis. By chance, it is possible that 17 of the 50 subjects
assigned to A =1 and 13 of the 50 subjects assigned to A =0
had bad prognosis. The two groups are not exactly exchange-
able. However, if we could draw many additional 100 person
samples from the population and repeat the randomised
experiment in each of these samples (or, equivalently, if we
could increase the size of our original sample), then the
imbalances between the groups A=1 and A =0 would be
increasingly attenuated. Under this conceptualisation, the
sample proportion Pr[Y=1|A =a] is a consistent estimator
of Pr[Y,=1], and Pr[¥, = 1] is a consistent estimator of the
population proportion Pr[Y, = 1] if our sample is a random
sample of the population of interest. This is the most realistic
conceptualisation.

Under either conceptualisation, standard statistical proce-
dures are needed to test the causal null hypothesis
Pr[Y,—,=1]=Pr[¥,_o=1] by comparing Pr[y=1|4A=1]
and Priy =1 |A = 0], and to compute confidence intervals for
the estimated association measures, which are consistent
estimators of the effect measures. The availability of the value
of only one counterfactual outcome for each subject,
regardless of whether all subjects in the population of
interest are or are not included the study (and regardless of
which conceptualisation is used), is the second reason why
statistics is necessary in causal inference.

A2 GENERALISATIONS

A2.1 Definition of causal effect

We defined causal effect of the exposure on the outcome,
Pr[Y,-, =1]#Pr[Y,—o=1], as a difference between the
counterfactual risk of the outcome had everybody in the
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population of interest been exposed and the counterfactual
risk of the outcome had everybody in the population been
unexposed. In some cases, however, investigators may be
more interested in the causal effect of the exposure in a
subset of the population of interest (rather than the effect in
the entire population). This causal effect is defined as a
contrast of counterfactual risks in that subset of the
population of interest.

A common choice is the subset of the population
comprised by the subjects that were actually exposed. Thus,
we can define the causal effect in the exposed as
Pr[Y,—,=1|A=1]#Pr[Y,—o=1|A=1] or, by definition of
counterfactual outcome, Pr[Y=1|4A=1]#Pr[V,—o=1]|A=1].
That is, there is a causal effect in the exposed if the risk of
the outcome among the exposed subjects in the population
of interest does not equal the counterfactual risk of the
outcome had the exposed subjects in the population been
unexposed. The causal risk difference in the exposed is
Pr[Y=1|A=1]-Pr[Y,-¢=1|A =1], the causal risk ratio in
the exposed is Pr[Y=1|A=1]/Pr[V,—o=1|A=1], and the
causal odds ratio in the exposed is (Pr[Y=1]A=1]/
Pr[Y =0|A = 1])/(Pr[Y,—o=1|A=1]/Pr[V,—o=0]A =1]).

The causal effect in the entire population can be computed
under the condition that the exposed and the unexposed are
exchangeable—that is, ¥, [ A for =0 and a=1. On the
other hand, the causal effect in the exposed can be computed
under the weaker condition that the exposed and the
unexposed are exchangeable had they been unexposed—that
is, Y, [T A for a =0 only. Under this weaker exchangeability
condition, the risk of the outcome under no exposure is equal
for the exposed and the unexposed: Pr[Y¥,_o=1|A=1]=
Pr[Y,—o=1]|A=0]. By definition of a counterfactual out-
come Pr[Y,_o=1|A=0]=Pr[V=1|A=0]. Therefore, when
the exposed and unexposed are exchangeable under a =0,
Pr[Y,—o=1|A=1]=Pr[V,_oq=1|A=0]=Pr[Y=1|A=0].
We decided to restrict our discussion to the causal effect in
the entire population and not to the causal effect in the
exposed because the latter cannot be directly generalised to
time varying exposures.

A2.2 Non-dichotomous outcome and exposure

The definition of causal effect can be generalised to non-
dichotomous exposure A and outcome Y. Let E[Y,] be the
mean counterfactual outcome had all subjects in the
population received exposure level a. For discrete outcomes,
the expected value E[Y,] is defined as the weighted sum

z ypy,(v) over all possible values y of the random variable Y,

where py,(-) is the probability mass function of Y,—that is,
py,(y) = Pr[¥, =y]. For continuous outcomes, the expected
value E[Y,] is defined as the integral .[y fy( )dy over all
possible values y of the random variable Y, where Sy ( ) is the
probability density function of ¥,. A common representation
of the expected value for discrete and continuous outcomes is
E[Y,] =| y dFy, (v), where F, () is the cumulative density
functiond’ (cdf) of the random varlable Y,.

We say that there is a population average causal effect if
E[Y,]#E[V,] for any two values a and a’. In ideal
randomised experiments, the expected value E[Y,] can be
consistently estimated by the average of ¥ among subjects
with A = a. For dichotomous outcomes, E[Y,] = Pr[Y, = 1].

The average causal effect is defined by the contrast of E[Y,]
and E[Y,]. When we talk of “the causal effect of heart
transplant (4)” we mean the contrast between ‘“receiving a
heart transplant (¢=1)" and ‘“not receiving a heart
transplant (2 =0).” In this case, we may not need to be
explicit about the particular contrast because there are only
two possible actions, and therefore only one possible
contrast. But for non-dichotomous exposure variables A4,
the particular contrast of interest needs to be specified. For
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example, “the causal effect of aspirin” is meaningless unless
we specify that the contrast of interest is, say, ““taking 150 mg
of aspirin daily for five years” compared with “not taking
aspirin”. Note that this causal effect is well defined even if
counterfactual outcomes under interventions other than
those involved in the causal contrast of interest are not well
defined or even do not exist (for example, “taking 1 kg of
aspirin daily for five years”).

The average causal effect, defined as a contrast of means of
counterfactual outcomes, is the most commonly used causal
effect. However, the causal effect may also be defined by a
contrast of, say, medians, variances, or cdfs of counterfactual
outcomes. In general, the causal effect can be defined as a
contrast of any functional of the distributions of counter-
factual outcomes under different exposure values. The causal
null hypothesis refers to the particular contrast of functionals
(means, medians, variances, cdfs, ...) used to define the
causal effect.

A2.3 Non-deterministic counterfactual outcomes

We have defined the counterfactual outcome Y, as the
subject’s outcome had he experienced exposure value a. For
example, in our first vignette, Zeus would have died if treated
and would have survived if untreated. This definition of
counterfactual outcome is deterministic because each subject
has a fixed value for each counterfactual outcome, for
example, Y, -, =1and Y, -, = 0 for Zeus. However, we could
imagine a world in which Zeus has certain probability of
dying, say @y (1) =0.9, if treated and certain probability of
dying, say @, (1)=0.1, if untreated. This is a non-determi-
nistic or stochastic definition of counterfactual outcome
because the probabilities ), ( ) are not zero or one. In general,
the probabilities 0, () vary across subjects (that is, they are
random) because not all subjects are equally susceptible to
develop the outcome. For discrete outcomes, the expected

value E[Y,] is then defined as the weighted sum Zy py,(y

over all possible values y of the random variable Y, Where the
probability mass function py (-) = E[Q, ()1
More generally, a non-deterministic definition of counter-
factual outcome does not attach some particular value of the
random variable Y, to each subject, but rather a statistical
distribution @, () of Y,. The deterministic definition of
counterfactual outcome implies that the cdf @, ( ) can only
take values 0 or 1 for all y. The use of random d1str1but10ns of
Y, (that is, distributions that may vary across subjects) to
allow for non-deterministic counterfactual outcomes does
not imply any modification in the definition of average
causal effect or the methods used to estimate it. To show

this, first note that E[Y,] =E[E[Y,|®, (-)]]. Therefore,

EfYa] :E[J.yde)}; (y)] =Iy dE[0y ()] =Iy ary (y
F, (-)=E[0,,_(-)]- The non-deterministic definition of causal

) because

effect is a generalisation of the deterministic definition in
which @, ( ) is a general cdf that may take values between 0
and 1.

The choice of deterministic compared with non-determi-
nistic counterfactual outcomes has no consequences for the
definition of the average causal effect and the point
estimation of effect measures based on averages of counter-
factual outcomes. However, this choice has implications for
the computation of confidence intervals for the effect
measures.’

A3 NO INTERACTION BETWEEN SUBJECTS

An implicit assumption in our definition of individual causal
effect is that a subject’s counterfactual outcome under
exposure value a does not depend on other subjects” exposure
value. This assumption was labelled ‘no interaction between
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units” by Cox,' and “stable-unit-treatment-value assump-
tion (SUTVA)” by Rubin." If this assumption does not hold
(for example, in studies dealing with contagious diseases or
educational programmes), then individual causal effects
cannot be identified by using the hypothetical data in table
2. Most methods for causal inference assume that SUTVA
holds.

A4 POSSIBLE WORLDS

Some philosophers of science define causal effects using the
concept of “possible worlds.” The actual world is the way
things actually are. A possible world is a way things might be.
Imagine a possible world a where everybody receives
exposure value 4, and a possible world a’ where everybody
received exposure value a’. The mean of the outcome is E[Y,]
in the first possible world and E[Y,] in the second one. There
is a causal effect if B[Y,]#E[Y,] and the worlds a and a’ are
the two worlds closest to the actual world where all subjects
receive exposure value a and a’, respectively.

We introduced the counterfactual Y, as the outcome of a
certain subject under a well specified intervention that
exposed her to a. Some philosophers prefer to think of the
counterfactual Y, as the outcome of the subject in the
possible world that is closest to our world and where she was
exposed to a. Both definitions are equivalent when the only
difference between the closest possible world involved and
the actual world is that the intervention of interest took
place. The possible worlds” formulation of counterfactuals
replaces the difficult problem of specifying the intervention
of interest by the equally difficult problem of describing the
closest possible world that is minimally different from the
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actual world. The two main counterfactual theories based on
possible worlds, which differ only in details, have been
proposed by Stalnaker'? and Lewis."
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