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Diet data, additive model for the log(Rate)

Table 24.1. Program output for the diet data

Parameter Estimate (M) SD (S) W

Corner -5.4180 0.4420

Exposure (1) 0.8697 0.3080 7.97

Age (1) 0.1290 0.4753 0.07

Age (2) 0.6920 0.4614 2.25

Max. log-likelihood is -247.03
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Interaction

We have assumed that the e�ect of exposure is constant over age

bands (and vice versa).

Is that reasonable?

Or is there interaction between age and exposure?

log(Rate)=Corner + Exposure + Age + Exposure·Age

Note the relationship with the Breslow-Day test for homogeneity over

age strata. However, we now:

� get a quanti�cation of heterogeneity

� are able to adjust for other explanatory variables when examining

interaction
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Table 24.5. Estimates of parameters in the model with interaction

Parameter Estimate SD

Corner -5.0237 0.500

Exposure(1) -0.0258 0.866

Age(1) -0.5153 0.671

Age(2) 0.3132 0.612

Age(1) · Exposure(1) 1.2720 1.020

Age(2) · Exposure(1) 0.8719 0.973

Test for no interaction: Max. log likelihood for

Corner + Age + Exposure + Age.Exposure

is -246.19 leading to the LR test 1.67 (2 d.f.)
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Illustrative example without interaction Table 22.4

Exposure

Age 0 1

0 5.0 15.0

1 12.0 36.0

2 30.0 90.0

0 5.0 5.0 × 3.0

1 12.0 12.0 × 3.0

2 30.0 30.0 × 3.0

0 5.0 5.0 × 3.0

1 5.0 × 2.4 5.0 × 2.4 × 3.0

2 5.0 × 6.0 5.0 × 6.0 × 3.0

Corner = 5.0 Age(1) = 2.4

Exposure (1) = 3.0 Age(2) = 6.0

5



Example: Illustrative values of rates with interaction

Table 24.2. De�nition of interactions in terms of exposure

Exposure

Age 0 1

0 5.0 15.0

1 12.0 42.0

2 30.0 135.0

0 5.0 5.0 × 3.0

1 12.0 12.0 × 3.5

2 30.0 30.0 × 4.5

0 5.0 5.0 × 3.0

1 12.0 12.0 × 3.0 × 1.167

2 30.0 30.0 × 3.0 × 1.5

interaction
parameters
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Example: Illustrative values of rates with interaction

Table 24.3. De�nition of interactions in terms of age

Exposure

Age 0 1

0 5.0 15.0

1 12.0 42.0

2 30.0 135.0

0 5.0 15.0

1 5.0 × 2.4 15.0 × 2.8

2 5.0 × 6.0 15.0 × 9.0

0 5.0 15.0

1 5.0 × 2.4 15.0 × 2.4 × 1.167

2 5.0 × 6.0 15.0 × 6.0 × 1.5

interaction
parameters
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Table 24.4. De�nition of interactions in terms of exposure and age

Exposure

Age 0 1

0 5.0 5.0 × 3.0

1 5.0 × 2.4 5.0 × 3.0 × 2.4 × 1.167

2 5.0 × 6.0 5.0 × 3.0 × 6.0 × 1.5
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Exercise 24.4, p. 242

Table 22.6. Energy intake and IHD incidence per 1000 person-years

Exposed Unexposed

Current (< 2750 kcal) (≥ 2750 kcal)

age Cases P-yrs. Rate Cases P-yrs. Rate RR

40�49 2 311.9 6.41 4 607.9 6.58 0.97

50�59 12 878.1 13.67 5 1271.1 3.93 3.48

60�69 14 667.5 20.97 8 888.9 9.00 2.33

Total 28 1857.5 15.07 17 2768.9 6.14 2.45

Verify that, in the model with interaction, the Corner is the log(observed

rate) for the youngest unexposed, and Exposure(1) is the log(observed rate

ratio) for exposure among the youngest.
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Exercise 24.4: solution

Parameter Estimate SD

Corner -5.0237 0.500

Exposure(1) -0.0258 0.866

Age(1) -0.5153 0.671

Age(2) 0.3132 0.612

Age(1) · Exposure(1) 1.2720 1.020

Age(2) · Exposure(1) 0.8719 0.973

log
4

607.9
= −5.0237, log

2
311.9

4
607.9

= −0.0258

(except for rounding errors)
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SAS and R code

proc genmod data=ihd;

class exposure (ref=’0’) age (ref=’0’) ;

model cases=exposure age exposure*age/dist=poisson offset=lpyrs type3;

run;

# Fit Poisson regression model with interaction

fit <- glm(cases ~ factor(exposure) + factor(age) +

factor(age):factor(exposure) + offset(log(pyrs)), ihd, family = "poisson")

summary(fit)

# and compare with model without interaction

fit0 <- glm(cases ~ factor(exposure) + factor(age) +

offset(log(pyrs)), ihd, family = "poisson")

anova(fit0,fit,test="Chisq")
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Table 24.5. Reporting estimates from the model with interaction:

Reparametrize into separate e�ects of Exposure within each Age band.

Parameter Estimate SD RR

Corner -5.0237 0.500

Exposure(1)·Age(0) -0.0258 0.866 0.97

Exposure(1)·Age(1) 1.2461 0.532 3.48

Exposure(1)·Age(2) 0.8461 0.443 2.33

Age(1) -0.5153 0.671 0.60

Age(2) 0.3132 0.612 1.37

This parametrization may be obtained by excluding the `main e�ect' of

exposure, e.g. in SAS:

MODEL cases = age exposure*age/ ...
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Interactions: which to study?

When the model contains p covariates there are p(p− 1)/2 possible

two-factor interactions (e.g., 45 for p = 10).

It is out of the question to study them all, so a general

recommendation is to restrict attention to those that were

pre-speci�ed in the research protocol:

�Don't ask a question if you are not interested in the reply!�

There will also be a type I error problem: �if you ask too many

questions you will get too many wrong answers�.
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Interaction is scale dependent (Sect. 26.6)

Table of disease rates (say, per 1000 years):

Factor A Factor B

Absent Present

Absent 0.1 0.2

Present 0.3 λ

If λ = 0.6 then the rate ratio associated with the presence of factor A

is 3 both when factor B is absent or present; and the rate ratio

associated with the presence of factor B is 2 both when factor A is

absent or present.

However, the rate di�erence associated with the presence of factor A

is 0.2 when factor B is absent and 0.4 if it is present and the rate

di�erence associated with the presence of factor B is 0.1 when factor

A is absent and 0.3 if it is present
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Factor A Factor B

Absent Present

Absent 0.1 0.2

Present 0.3 λ

If λ = 0.4 then the rate di�erence associated with the presence of

factor A is 0.2 both when factor B is absent or present; the rate

di�erence associated with the presence of factor B is 0.1 both when

factor A is absent or present.

However, the rate ratio associated with the presence of factor A is 3

when factor B is absent and 2 if it is present and the rate ratio

associated with the presence of factor B is 2 when factor A is absent

and 1.33 if it is present
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Interaction is scale dependent

On which scale should we study interaction?

Items to consider:

� Interpretation: absolute vs. relative e�ects

� Goodness of �t

� `Biological' interaction
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Potential interaction between 2 exposures

Table 24.6. Cases (controls) for oral cancer study.

Alcohol (oz/day, 1 drink ∼ 0.3 oz/day).

Tobacco 0 1 2 3

(cigs/day) 0 0.1-0.3 0.4-1.5 1.6+

0 (0) 10 (38) 7 (27) 4 (12) 5 (8)

1 (1-19) 11 (26) 16 (35) 18 (16) 21 (20)

2 (20-39) 13 (36) 50 (60) 60 (49) 125 (52)

3 (40+) 9 (8) 16 (19) 27 (14) 91 (27)

Table 24.7. Case/control ratios for the oral cancer data.

Alcohol

Tobacco 0 1 2 3

0 0.26 0.26 0.33 0.63

1 0.42 0.46 1.13 1.05

2 0.36 0.83 1.22 2.40

3 1.12 0.84 1.93 3.37
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Is the e�ect of tobacco the same for all levels of alcohol consumption?

SYNERGY?

= INTERACTION

Note that CORRELATION is something completely di�erent
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Fig. 24.2. Nesting of models

5. Corner+Alcohol+Tobacco+Alcohol.Tobacco

4. Corner+Alcohol+Tobacco

2. Corner+Alcohol 3. Corner+Tobacco

1. Corner
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Exercise 24.6, p. 246: Calculate the likelihood ratio test statistics

between successive nested models.
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Exercise 24.6: Log-likelihoods

5. -577.65

4. -580.99

2. -596.62 3. -608.59

1. -643.93

H
HHHHj

HHH
HHj

���
���

�
�����

?
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Exercise 24.6: solution

Likelihood ratio tests:

Hypothesis Test statistic Degrees of freedom

Model 4. vs. 5. 2 · (580.99− 577.65) = 6.68 9=16-7

=(4-1)(4-1)

Model 2. vs. 4. 2 · (596.62− 580.99) = 31.26 3=4-1

Model 3. vs. 4. 2 · (608.59− 580.99) = 51.20 3=4-1
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Quantitative covariates (dose-response models)

Explanatory variables with ordered categories.

Table 25.1. Alcohol and tobacco treated as categorical variables

Parameter Estimate SD

Corner -1.6090 0.2654

Alcohol(1) 0.2897 0.2327

Alcohol(2) 0.8437 0.2383

Alcohol(3) 1.3780 0.2256

Tobacco(1) 0.5887 0.2844

Tobacco(2) 1.0260 0.2544

Tobacco(3) 1.4090 0.2823

22



Alternative: monotone e�ect of tobacco
Fig. 20.1. Log-linear trend
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Look at successive di�erences between e�ects:

Tobacco(1), Tobacco(2)-Tobacco(1), Tobacco(3)-Tobacco(2)

Exercise 25.1, p. 249: Calculate the values of these new parameters.

Introduce a variable

taking values 0, 1, 2 or 3 and denote its e�ect by

[Tobacco]

Model: log(Odds) = Corner + Alcohol + [Tobacco]
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Exercise 25.1: solution

Table 25.1. Alcohol and tobacco treated as categorical variables

Parameter Estimate SD Succ. di�.

Corner -1.6090 0.2654

Alcohol(1) 0.2897 0.2327 0.2897

Alcohol(2) 0.8437 0.2383 0.5540

Alcohol(3) 1.3780 0.2256 0.5543

Tobacco(1) 0.5887 0.2844 0.5887

Tobacco(2) 1.0260 0.2544 0.4373

Tobacco(3) 1.4090 0.2823 0.3830
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Model: log(Odds) = Corner + Alcohol + [Tobacco]
Table 25.2. The linear e�ect of tobacco consumption

Alcohol Tobacco log(Odds)=Corner + ...

0 0 -

0 1 1×[Tobacco]

0 2 2×[Tobacco]

0 3 3×[Tobacco]

1 0 Alcohol(1)

1 1 Alcohol(1)+1×[Tobacco]

1 2 Alcohol(1)+2×[Tobacco]

1 3 Alcohol(1)+3×[Tobacco]

2 0 Alcohol(2)

2 1 Alcohol(2)+1×[Tobacco]

2 2 Alcohol(2)+2×[Tobacco]

2 3 Alcohol(2)+3×[Tobacco]

3 0 Alcohol(3)

3 1 Alcohol(3)+1×[Tobacco]

3 2 Alcohol(3)+2×[Tobacco]

3 3 Alcohol(3)+3×[Tobacco]
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Table 25.3. Linear e�ect of tobacco per level

Parameter Estimate SD

Corner �1.5250 0.219

Alcohol(1) 0.3020 0.232

Alcohol(2) 0.8579 0.237

Alcohol(3) 1.3880 0.225

[Tobacco] 0.4541 0.083

Both in SAS and R, treating a variable as quantitative is the default.

That is, to treat x as quantitative, you should not declare it as CLASS

in SAS, and you should write x instead of factor(x) in R.
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Similarly with alcohol consumption:

introduce variable with values=0, 1, 2 or 3

and denote its e�ect [Alcohol]

Table 25.4. Linear e�ects of alcohol and tobacco per level

Parameter Estimate SD

Corner �1.6290 0.1860

[Alcohol] 0.4901 0.0676

[Tobacco] 0.4517 0.0833

Exercise 25.3, p. 251: Estimate the log(odds ratio) between (Alc 3,

Tob 3) and (Alc 0, Tob 0) based on the models in Tables 25.1 and

25.4 (i.e., either treating both as categorical or treating both as

quantitative).
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Exercise 25.3: solution

Tobacco(3)+Alcohol(3)=2.7870

3× [Tobacco] + 3× [Alcohol] = 2.8254
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Alternative ways of scoring

Tobacco: cigarettes/day (0 : 0, 1-19 : 10, 20-39 : 30, 40+ : 50)

Alcohol: ounces/day (0.0 : 0, 0.1-0.3 : 0.2, 0.4-1.5 : 1.0, 1.6+ : 2.0)

Table 25.5. Alcohol in ounces/day and tobacco in cigarettes/day

Parameter Estimate SD

Corner �1.2657 0.1539

[Alcohol] 0.6484 0.0881

[Tobacco] 0.0253 0.0046
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Test for linearity

1. Compare the �nested� models:

log(Odds) = Corner + Alcohol + Tobacco

and

log(Odds) = Corner + Alcohol + [Tobacco],

here: LR test=0.38, 2. d.f.,

2. Eliminate [Tobsq] (=0, 1, 4, 9) from

log(Odds) = Corner + Alcohol + [Tobacco] + [Tobsq],

here LR test=0.02, 1 d.f.
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Trend test

Always 1. d.f.!

Eliminate [Tobacco] from the model:

log(Odds) = Corner + Alcohol + [Tobacco],

here LR test=30.88 (Wald test: similar).
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Using individual levels of the quantitative covariate

Why not use individual levels, that is, a truly quantitative covariate

and no categorization at all?

Pros and cons

� Information is lost by categorization

� Categories may be more robust (e.g., smoking)

� Few outliers may have large in�uence (�Casanova e�ect�!)

� Model with a linear e�ect is no longer �nested� in categorical

model ⇒ alternative alternatives are needed when testing linearity
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Indicator (`dummy') variables

The way in which the categorical covariates are entered into the

regression model.

Table 25.8. Indicator variables for the four alcohol levels - include

A1, A2, A3:

A0 A1 A2 A3 Level log(Odds) = Corner + · · ·

1 0 0 0 0 �

0 1 0 0 1 Alcohol(1)

0 0 1 0 2 Alcohol(2)

0 0 0 1 3 Alcohol(3)

The use of indicator variables enables the programmer to choose

his/her preferred reference level by excluding the corresponding

indicator (here: level 0).
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Treating the zero level di�erently

Fig. 25.1. Separating zero exposure from the dose-response.
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Corresponds to adding a new variable [Smoker]

`Table 25.11.' Separating zero exposure from the dose-response

Tobacco Smoker log(Odds) = Corner + · · ·

0 0 -

1 1 [Smoker] + 1 × [Tobacco]

2 1 [Smoker] + 2 × [Tobacco]

3 1 [Smoker] + 3 × [Tobacco]
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Truly quantitative covariates, x

In a model like

log(Rate)=Corner + Exposure + [x]

the e�ect of x is assumed to be linear, i.e. [x] expresses the change in

log(Rate) per 1 unit change of x.

To test for linearity, one may add [xsq] to the model where xsq= x2.

An alternative alternative is a linear spline.
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Linear splines

An alternative to a straight line could be a broken line.

Introduce break points for x, e.g., a1, a2, a3 and add the three linear

splines

I1 × [x− a1], I2 × [x− a2], I3 × [x− a3]

to [x]:

Here, I1 = indicator for x ≥ a1
I2 = indicator for x ≥ a2
I3 = indicator for x ≥ a3

The parameter for the spline I1 × [x− a1] gives the change in slope at

the break point a1. Similarly for a2, a3.

Linear splines are easy to program and parameters are easier to

interpret than for quadratic terms (quadratic and cubic splines also

exist - but then the nice interpretation is lost).
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Code for indicator variables and splines (1)

Indicator variables (Z0, Z1) in SAS may be created in the obvious way

from a binary variable Z:

if Z=0 then Z0=1; if Z=1 then Z0=0;

if Z=0 then Z1=0; if Z=1 then Z1=1;

A shorter, but less transparent code uses `logical expressions':

Z0=(Z=0); Z1=(Z=1);

Then include either Z0 or Z1 in the model (depending on the preferred

reference group).
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Code for indicator variables and splines (2)

The last way of coding makes creation of splines easy.

Suppose X is quantitative and we want a linear spline with break

points at A1 and A2:

X1=(X-A1)*(X>A1); X2=(X-A2)*(X>A2);

Then include both X, X1 and X2 in the model to obtain a piecewise

linear e�ect of X.

The test for linearity corresponds to eliminating both X1 and X2 from

the model.

Completely analogously in R:

X1<-(X-A1)*(X>A1)

X2<-(X-A2)*(X>A2)
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Higher order (`smoothing') splines

Linear splines are easy to compute and they provide parameters with a

simple interpretation.

Higher order (`quadratic' or `cubic') splines are often available in

regression software. They are smooth and more �exible than linear

splines, however, they are purely descriptive and provide estimated

dose-response curves, but no interpretable parameters.

Last curve on the �gure is a quadratic spline.
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