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During the exercise we will use the following R package:

library(Epi) ## effx function
library(survival) ## survfit function

and the dataset

bissau <- read.table(
file = "https://bozenne.github.io/doc/Teaching/bissau.txt",
header=TRUE
)
## only keep relevant column
bissau <- bissaul[,c("id","fuptime","fupstatus","bcg")]
## convert categorical variable from numeric to factor
bissau$id <- as.factor(bissau$id)
bissau$fupstatus <- as.factor(bissau$fupstatus)
bissau$bcg <- as.factor(bissau$bcg)




Part A: by hand calculation

In this section we use the following dataset:

bissau.10 <- rbind(bissaul[bissau$bcg=="no",][c(3:5,15,182),],
bissau[bissau$bcg=="yes",] [c(1,25:28),])
bissau.10

id fuptime fupstatus bcg

20 20 183 censored no
25 25 147 dead no
31 31 183 censored no
59 59 183 cemnsored no
526 526 177 dead no
1 1 65 dead yes
29 29 183 censored yes
30 30 183 censored yes
32 32 183 censored yes
33 33 183 censored yes

1. To obtain the first table, we count the number of lines with "dead" and "censored" per bcg
group or in total:

t22.10 <- table(bcg = bissau.10$bcg, status = bissau.10$fupstatus)
£22.10t <- rbind(£22.10, total = colSums(t22.10))
t22.10t

censored dead

no 3 2
yes 4 1
total 7 3

For the second table, the first two columns can be retrieved from the previous table. The last
column is obtained by summing the fuptime per bcg group or in total:

£23.10 <- xtabs(cbind("n" = 1,
"death" = fupstatus=='"dead",
"person-day" = fuptime) ~ bcg,
data = bissau.10)
t23.10t <- addmargins(t23.10, margin = 1)

t23.10t

bcg n death person-day
no 5 2 873
yes 5 1 797
Sum 10 3 1670




2. The risk of death is obtained by dividing the number of deaths by the number of children
(e.g. 2/5=0.4).
The odds is the risk of death divided by 1 minus the risk of death (e.g. 0.4/(1-0.4)=0.67...).
The rate per day is the number of death divided by the number of person-days (e.g. 2/873=0.0023. . .).
The rate per year is the number of death divided by the number of person-years where the
number of person-years is the number of person-days divided by 365.25 (e.g. 2/(873/365.25)=0.84...).

D <- t22.10t[,"dead"]
n <- rowSums(t22.10t)
Y <- t23.10t[,"person-day"]
estimate.10 <- rbind(risk = D/n,
odds = (D/n)/(1-D/n),

"rate (per day)" = D/Y,
D/(Y/365.25))
colnames(estimate.10) <- pasteO("bcg ",colnames(estimate.10))

"rate (per year)"

estimate. 10

bcg no bcg yes  bcg total
risk 0.400000000 0.200000000 0.300000000
odds 0.666666667 0.250000000 0.428571429

rate (per day) 0.002290951 0.001254705 0.001796407
rate (per year) 0.836769759 0.458281054 0.656137725

3. Risk and rates point estimates are lower in the vaccinated group compared to the non-
vaccinating group, pointing toward a protective vaccine effect. The point estimate of the
pooled sample lies in between the point estimate of each vaccination group.

4. There are several limitations:

o we are working on a very small sample, which may not be representative of the whole
population. Moreover, the estimates we get are probably very uncertain.

e we have not computed the uncertainty associated with the estimates, so it is unclear
if the observed difference are due to the vaccine or due to sampling variability (i.e.
chance).

o the study was not described as randomized so the vaccinated and un-vaccinated children
may not be comparable, e.g. vaccinated may have easier access to healthcare. So it
is unclear if the observed difference are due to the vaccine or these external factors
(confounding).



5. We can estimate the incidence rate (per day) from the full population using a similar ap-
proach:

t23 <- xtabs(cbind("n" 1,
"death" = fupstatus=="dead",

"person-day" = fuptime) ~ bcg,

data = bissau)

t23

bcg n death person-day
no 1973 97 325258
yes 3301 125 554929

t23[,"death"]/t23[, "person-day"]

no yes
0.0002982248 0.0002252540

A large proportion of children left the study (i.e. was right-censored) before 183 days:

100*mean ((bissau$fuptime<183) * (bissau$fupstatus=="censored"))

[1] 47.47819

so we cannot directly compute the risk on the whole cohort, as assuming that none of the
children who left the studied dies is an unrealistic assumption.

6. Among the first children there are no ties. To obtain the risk we:

« first calculate the number at risk at each timepoint and add it to the dataset

bissau.order <- bissaulorder(bissau$fuptime),]
bissau.orderY8 <- bissau.order[bissau.order$bcg=="yes",][1:8,]
bissau.orderY8$atRisk <- sum(bissau.order$bcg=="yes") - 0:7

bissau.orderY8

id fuptime fupstatus bcg atRisk

2876 2876 2 censored yes 3301
89 89 4 censored yes 3300
1908 1908 5 censored yes 3299
2551 25561 6 dead yes 3298
2786 2786 9 censored yes 3297
1344 1344 12 dead yes 3296
598 598 15 censored yes 3295
3736 3736 16 dead yes 3294




o compute the hazard rates:

lambda <- (bissau.orderY8$fupstatus=="dead")/bissau.orderY8$atRisk
print (lambda, digits = 3)

[1] 0.000000 0.000000 0.000000 0.000303 0.000000 0.000303 0.000000 0.000304

e deduce the risk

M.risk <- rbind(time = bissau.orderY8$fuptime,
1 - cumprod(1-lambda))
4)

risk

print(M.risk, digits

[,11 [,2] [,3] [,4] [,5] [,6] [,7] [,8]
time 2 4 5 6.0000000 9.0000000 1.200e+01 1.500e+01 1.600e+01
risk 0 0 0 0.0003032 0.0003032 6.065e-04 6.065e-04 9.099e-04
So the risk at 5 days is 0, at 10 days is 0.0003 (i.e. the same as at 9 days), and the risk at 15
days is 0.0006.
Part B: using dedicated functions of a statistical software

Incidence rate

7. The 2 by 3 table can be obtained using

t23 <- xtabs(cbind("n" = 1,
"death" = fupstatus=='"dead",
"person-day" = fuptime) ~ bcg,
data = bissau)

t23

bcg n death person-day
no 1973 97 325258
yes 3301 125 554929

The incidence rate can be deduced by dividing the number of deaths per the person-day (or
person-year divided by 365.25):




D <- t23[,"death"]
Y.day <- t23[,"person-day"]
Y.year <- t23[,"person-day"]/365.25

M.I <- cbind("rate per day" = D/Y.day,
"rate per year" = D/Y.year)
M.I

rate per day rate per year
no 0.0002982248 0.10892661
yes 0.0002252540 0.08227404

The rate per person day looks very small but it is not. The ratio is a scaled quantity so it is
only meaningful with a scale and a day is a very short time interval. A rate of 0.109 per person
year is equivalent to 1.09 per 10-person year i.e. we would expect about 1 child out of 10 to die
every year if not vaccinated. This interpretation is here to illustrate what the value is, as we only

have 6-month follow-up - we would need to assume a constant rate over time for this interpretation
to hold.

8. The incidence difference and ratio can be obtained by substracting or dividing the previous
estimates, e.g.:

setNames(M.I[2,] - M.I[1,],
c("rate difference per day", "rate difference per year")

)

rate difference per day rate difference per year
-7.297075e-05 -2.665257e-02

setNames(M.I[2,] / M.I[1,],
c("rate ratio", "rate ratio")

)

rate ratio rate ratio
0.7553163 0.7553163

Note that the rate difference keeps its unit (per person.day or per person.year) while the rate
ratio is unitless. Confidence intervals can be obtained using dedicated functions:

effx(response = bissau$fupstatus=="dead",
exposure = bissau$bcg,
fup = bissau$fuptime/365.25, type = "failure", eff = "RD")




response : bissau$fupstatus == "dead"
type : failure
exposure : bissau$bcg

bissau$bcg is a factor with levels: no / yes
baseline is no
effects are measured as rate differences

effect of bissau$bcg on bissau$fupstatus == "dead"

number of observations 5274

Effect 2.5% 97.5%
-0.026700 -0.052700 -0.000616

Test for no effects of exposure on 1 df: p-value= 0.0395
Der var 50 eller flere advarsler (brug warnings() for at se den fgrste 50)

effx(response = bissau$fupstatus=="dead",

exposure = bissau$bcg,

fup = bissau$fuptime/365.25, type = "failure", eff = "RR")

response : bissau$fupstatus == "dead"
type : faijlure
exposure : bissau$bcg

bissau$bcg is a factor with levels: no / yes
baseline is no
effects are measured as rate ratios

effect of bissau$bcg on bissau$fupstatus == "dead"

number of observations 5274

Effect 2.5% 97.5%
0.755 0.579 0.985

Test for no effects of exposure on 1 df: p-value= 0.0395
There were 50 or more warnings (use warnings() to see the first 50)

The confidence intervals for the rate ratio barely do not overlap 1 (or 0 for the rate difference).
So there is some evidence for a vaccine effect. We should keep in mind that the point estimate is




about a 24% reduction in rate, which is not that impressive for a vaccine and the data is compatible
with a risk reduction from nearly nothing to 40%.

9. Using a Poisson model we retrieve the same rate ratio:

e.Poisson <- glm(fupstatus=="dead" ~ bcg, data = bissau,
family = poisson(link = "log"), offset = log(fuptime))
cbind(estimate = exp(coef(e.Poisson)), exp(confint(e.Poisson)))

Waiting for profiling to be donme...

estimate 2.5 % 97.5 %
(Intercept) 0.0002982248 0.0002427451 0.0003615709
bcgyes 0.7553162786 0.5799959555 0.9865547965

An equivalent syntax is:

e.PoissonBis <- glm(cbind(fupstatus=="dead",fuptime) ~ bcg,
data = bissau, family = poisreg)
ci.exp(e.PoissonBis)

exp(Est.) 2.5% 97.5%
(Intercept) 0.0002982248 0.0002444092 0.0003638899
bcgyes 0.7553162791 0.5793649166 0.9847035350

Omitting the intercept output the group-specific incidence rates instead of the incidence rate
of the reference group and the rate ratio:

e2.Poisson <- glm(cbind(fupstatus=="dead",fuptime) ~ 0 + bcg,
data = bissau, family = poisreg)
ci.exp(e2.Poisson)

exp(Est.) 2.5% 97.5%
bcgno 0.0002982248 0.0002444092 0.0003638899
bcgyes 0.0002252540 0.0001890341 0.0002684140

Incidence rates can be obtained per year by dividing by 365.25:

e3.Poisson <- glm(cbind(fupstatus=="dead",fuptime/365.25) ~ 0 + bcg,
data = bissau, family = poisreg)
ci.exp(e3.Poisson)

exp(Est.) 2.5% 97.5%
bcgno 0.10892661 0.08927365 0.13290604
bcgyes 0.08227404 0.06904509 0.09803763




183-day risk of death:

10. ’Ignoring censoring’, we can get an estimate of the risks and risk ratio simply substracting
or dividing the risks:

D <- t23[,"death"]

n <- t23[,"n"]

r <- D/n

c(r, ratio = unname(xr[2]/r[1]))

no yes ratio
0.04916371 0.03786731 0.77022895

e or using effx

effx(response = bissau$fupstatus=="dead",

exposure = bissau$bcg,

type = "binary", eff = "RR")

response :  bissau$fupstatus == "dead"
type :  binary
exposure ¢ bissau$bcg

bissau$bcg is a factor with levels: no / yes
baseline is no

effects are measured as relative risk

effect of bissau$bcg on bissau$fupstatus == "dead"
number of observations 5274

Effect 2.5% 97.5Y%
0.770 0.594 0.998

Test for no effects of exposure on 1 df: p-value= 0.0501

e or using glm

e.logit <- glm(fupstatus ~ bcg, data = bissau,
family = binomial(link = "log"))
cbind(estimate = exp(coef(e.logit)), exp(confint(e.logit)))




Waiting for profiling to be done...

estimate 2.5 % 97.5 %
(Intercept) 0.04916371 0.04020354 0.05929258
bcgyes 0.77022897 0.59498657 1.00017261

Either way this approach assumes that none of the children who left the study died within 183
days which is not realistic.

11. The computation 'by hand’ of the Kaplan Meier estimates was shown in the answer to
question 6.

12. We use the survfit function to obtain the Kaplan Meier estimates:

e.KM <- survfit(Surv(fuptime,fupstatus) ~ bcg, data = bissau)
e.KM

Call: survfit(formula = Surv(fuptime, fupstatus) ~ bcg, data = bissau)

n nevent rmean
bcg=no, (s0) 1973 0 178.004315
bcg=yes, (s0) 3301 0 179.728609
bcg=no, dead 1973 97  4.995685

bcg=yes, dead 3301 1256 3.271391
xrestricted mean time in state (max time = 183 )

For a graphical display:

plot(e.KM, col=1:2)
legend("topleft", legend=levels(bissau$bcg), col=1:2, lty=1, horiz=FALSE, bty=’n’)

— no

0.04
|

0.02
|
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Estimates of the risk can be extracted using summary:

eS.KM <- summary(e.KM, times = c(5,10,15,183))
print(eS.KM, digits = 4)

Call: survfit(formula = Surv(fuptime, fupstatus) ~ bcg, data = bissau)

bcg=no
time n.risk n.event Pr((s0)) Pr(dead)
5 1973 0 1.0000 0.000000
10 1969 2 0.9990 0.001014
15 1967 2 0.9980 0.002029
183 935 93 0.9466 0.053374
bcg=yes
time n.risk n.event Pr((s0)) Pr(dead)
5 3299 0 1.0000 0.0000000
10 3296 1 0.9997 0.0003032
15 3295 1 0.9994 0.0006065
183 1615 123 0.9592 0.0407863

For the earlier timepoints, we get the same values as those computed question 6 and 11. As
expected the final risk is higher than the one computed 'ignoring censoring’, about 0.003 higher.
We can get standard errors and confidence intervals for the risk:

df .riskKM <- data.frame(time = eS.KM$time,
bcg = eS.KM$strata,
estimate = eS.KM$pstatel[,2],
se = eS.KM$std.err[,2],
lower = eS.KM$lower[,2],
upper = eS.KM$upperl[,2])

df .riskKM

time bcg estimate se lower upper
1 5 bcg=no 0.0000000000 0.0000000000 0.000000e+00 0.000000000
2 10 bcg=no 0.0010141988 0.0007167831 2.538271e-04 0.004052361
3 15 bcg=no 0.0020294283 0.0010136844 7.624386e-04 0.005401850
4 183 bcg=no 0.0533744092 0.0053653648 4.382961e-02 0.064997785
5 5 bcg=yes 0.0000000000 0.0000000000 NA NA
6 10 bcg=yes 0.0003032141 0.0003031681 4.272449e-05 0.002151899
7 15 bcg=yes 0.0006065201 0.0004287444 1.517530e-04 0.002424114
8 183 bcg=yes 0.0407863345 0.0036161646 3.428042e-02 0.048526974

!The confidence interval are computed using a transformation (log by default) but the standard error is the
untransformed one. This can be verified by re-fitting the survfit object with the argument conf.type="plain"
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Getting the confidence intervals for the risk difference require specific calculations, e.g.:

RD <- eS.KM$pstate[8,2] - eS.KM$pstate[4,2]

sigma_RD <- sqrt(eS.KM$std.err[4,2]72 + eS.KM$std.err[8,2]72)
c(estimate = RD,

lower = RD - 1.96*sigma_RD,
upper = RD + 1.96%sigma_RD)
estimate lower upper

-1.258807e-02 -2.526971e-02 9.356241e-05
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Appendix : Exact test

Consider 20 realizations where the event of interest happened in 5 of them. The "classic", asymp-
totically valid, confidence interval would look like:

n <- 20
D <-3
c(D/n - 1.96%sqrt(D/n*(1-D/n)/n), D/n + 1.96*sqrt(D/n*(1-D/n)/n))

[1] -0.00649345 0.30649345

with a lower bound below 0. This is not optimal and is likely to wide on the left of the estimate
and to narrow on the right of the estimate (covarage of about 90% instead of 95%). An exact
confidence interval would be:

binom.test(x = D, n = n)

Exact binomial test

data: D and n

number of successes = 3, number of trials = 20, p-value = 0.002577
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:

0.03207094 0.37892683

sample estimates:
probability of success

0.15

To derive this confidence interval we identify the probability:
o giving 2.5% chance of observing between 0 and 5 events

o giving 2.5% chance of observing between 5 and 20 events

sum(dbinom(0:5, size = 20, prob = 0.49104587))
sum(dbinom(5:20, size = 20, prob = 0.08657147))

[1] 0.025
[1] 0.025

In practice we would need to try out several proabilities until we find a reasonnable approxi-
mation of 2.5% on each side of the confidence interval.
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Appendix

Summary table

Parameter by hand regression model
risk (r1,72) Logistic
A 1o drop-out e <- glm(Y ~ G-1,family=binomial (1ink="identity") ,data=...)
coef (e)
odds of risk (li—lrl, 1%2) Logistic

/\ no drop-out

e <- glm(Y ~ G-1,family=binomial (1ink="logit"),data=...)
exp(coef(e)) or ci.exp(e)

rate (A1, Ag) Poisson
e <- glm(Y ~ G-1,family=poisson(link="1log"),offset = log(time), dat
exp (coef (e))
or
e <- glm(cbind(Y,time) ~ G-1,family=poisreg, data=...)
ci.exp(e)
risk difference Ty — T Logistic
A 1o drop-out e <- glm(Y ~ G,family=binomial (1ink="identity") ,data=...)
coef (e) [2]
risk ratio ro/T1 Logistic
A 1o drop-out e <- glm(Y ~ G,family=binomial(link="log") ,data=...)
exp(coef(e) [2]) or ci.exp(e, subset = "G")
odds ratio %7::33 Logistic
/A 1o drop-out e <- glm(Y ~ G,family=binomial (link="logit") ,data=...)
exp(coef(e) [2]) or ci.exp(e, subset = "G")
rate ratio Ao/ Poisson

e <- glm(Y ~ G,family=poisson(link="1log") ,offset =
exp(coef (e) [2])
or
e <- glm(cbind(Y,time) ~ G,family=poisreg, data=...)
ci.exp(e, subset = "G")

log(time), date
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