Lecture 2: Measures of disease frequency and association

 Key concepts
1 Data representation

Typical epidemiological data correspond to n individuals (here $n=4$) followed over time until a specific event (here infection) or until the end of study (here $\tau=8$ months):

In an ideal study, each subject may experience 3 states:

- not at risk: the subject cannot experience the event (before the solid line) (e.g. COVID infection: COVID did not exist yet, pregnancy: outside fertility age)
- at risk: the subject may experience the event at any time (solid line)
(ideally the start of the at risk time coincide with the start of the study)
- event: the subject experiences the event (squares). Thereafter he is no longer at risk.
$\$$ The subject can also experience competing events preventing the event of interest to occur (e.g. death) or we might lose track of him at a certain time (censoring, here circles)

Notations: $\mathbb{1}_{x}$ indicator function of x being true and $a \wedge b$ minimum between a and b

- time to event: T
- right-censored time: $\quad \tilde{T}=T \wedge \tau$ time to death stopped at the end of study
- event occurence: $\quad N(t)=\mathbb{1}_{T \leq t}$ i.e. 0 (healthy/survival before time T)

1 (sick/death/failure after time T)

- observable occurence: $\quad \tilde{N}(t)=\mathbb{1}_{T \leq t \wedge \tau}$
- health status: $\quad H(t)=1$ if sick (still affect by the event) otherwise 0

On the computer there are various (sometimes equivalent) way to store the data:

Individual data: one line per subject

```
patient inclusion end time status
    id1 01-08-2020 01-10-2020 2.0 dead
    id2 01-07-2020 01-03-2021 8.0 alive
    id3 02-05-2020 01-11-2021 5.9 dead
    id4 01-05-2020 01-01-2021 8.0 alive
```

Aggregated data: one line per timepoint

time	n.atRisk	dead	n-D	D	Y
0.0	4	0	4	0	0.0
2.0	4	1	3	1	8.0
5.9	3	1	2	2	19.7
8.0	2	0	2	2	23.9

The aggregated format provides a much more compact data representation. This can be critical for real life dataset that may consider millions of individuals, like for the COVID pandemic ${ }^{1}$:

Generally this compact representation is performed at the expense of a loss of information about subject's covariates or inclusion time. It makes it difficult to account for heterogeneity between populations (e.g. age unbalance) or time trends.

A simple (but crude) way to compare two populations is via a 2 by 2 table, containing the data relative to each population at a specific timepoint, e.g. week 29 in 2022:

	at risk	infected
Denmark	2960606	10171
France	34610810	530397

Notations:

- cumulative number of events: $\quad D(t)=\sum_{i=1}^{n} N_{i}(t)$
- remaining event-free individuals: $n-D(t)$
- cumulative follow-up time: $\quad Y(t)=\sum_{i=1}^{n} \tilde{T}_{i} \wedge t$

[^0]
2 Measures of disease frequency

Quantity of interest (deterministic)

- prevalence: $\pi(t)=\mathbb{P}[H(t)=1] \in[0,1]$
- odds: $\Omega(t)=\frac{\pi(t)}{1-\pi(t)} \in[0,+\infty[$.

Rare event: $\Omega \approx \pi$ when prevalence is small.

- hazard or rate: $\lambda(t)=\lim _{\tau \rightarrow 0} \frac{\mathbb{P}[t<T \leq t+\tau, N(t+\tau)=1 \mid T>t]}{\tau}$
- t-years risk: $r(t)=\mathbb{P}[0<T \leq t, N(t)=1]$

Estimation (stochastic)

- cross sectional study a time t with a single group: $\left(N_{i}(t)\right)_{i \in\{1, \ldots, n\}}$
- prevalence: $\widehat{\pi}(t)=\frac{1}{n} \sum_{i=1}^{n} H_{i}(t)=\frac{\text { number of person sick at time } t}{\text { number of people in the population }}$
- odds: $\widehat{\Omega}(t)=\frac{\widehat{\pi}(t)}{1-\widehat{\pi}(t)}$.
- τ-years cohort study with a single group: $\left(\widetilde{N}_{i}(t), \widetilde{T}_{i}\right)_{i \in\{1, \ldots, n\}, t \in[0, \tau]}$
- incidence rate: $\hat{\lambda}(\tau)=\frac{\sum_{i=1}^{n} \widetilde{N}_{i}(\tau)}{\sum_{i=1}^{n} \widetilde{T}_{i}}=\frac{\widetilde{D}(\tau)}{\widetilde{Y}}=\frac{\text { number of events up to time } \tau}{\text { number of person time at risk }} \quad$! has a unit!
- τ-years risk: $\widehat{r}(\tau)=\frac{1}{n} \sum_{i=1}^{n} \widetilde{N}_{i}(\tau)=\frac{\widetilde{D}(\tau)}{n}=\frac{\text { number of events up to time } \tau}{\text { number of persons at risk }}$

Uncertainty (stochastic, the dependency on time is dropped to simplify the expressions)

1. prevalence: $\mathrm{CI}_{\widehat{\pi}, 95 \%}=\left[\widehat{\pi}-1.96 \sigma_{\widehat{\pi}}, \widehat{\pi}+1.96 \sigma_{\widehat{\pi}}\right]$
2. odds: $\mathrm{CI}_{\widehat{\Omega}, 95 \%}=\left[\widehat{\Omega} \exp \left(-1.96 \sigma_{\log \widehat{\Omega}}\right), \widehat{\Omega} \exp \left(1.96 \sigma_{\log \widehat{\Omega}}\right)\right]$
3. incidence rate: $\mathrm{CI}_{\widehat{\lambda}, 95 \%}=\left[\widehat{\lambda}_{\tau} \exp \left(-1.96 \sigma_{\log \widehat{\lambda}}\right), \widehat{\lambda} \exp \left(1.96 \sigma_{\log \widehat{\lambda}}\right)\right]$
4. τ-years risk: $\mathrm{CI}_{\widehat{r}, 95 \%}=\left[\widehat{r}-1.96 \sigma_{\widehat{r}}, \widehat{r}+1.96 \sigma_{\widehat{r}}\right]$
where $\sigma_{\widehat{\pi}}=\sqrt{\frac{\pi(1-\pi)}{n}}$ where $\sigma_{\log \widehat{\Omega}}=\sqrt{\frac{1}{D}+\frac{1}{n-D}}$ where $\sigma_{\log \widehat{\lambda}}=\frac{1}{\sqrt{\widetilde{D}}}$
where $\sigma_{\widehat{r}}=\sqrt{\frac{r(1-r)}{n}}$

Confidence intervals:

Even though the estimate \bullet will not exactly match the quantity of interest •, we can derive an interval $\mathrm{CI}_{\widehat{\boldsymbol{\bullet}}, 95 \%}$ containing the target with high probability (here 0.95), e.g.:

$$
\begin{aligned}
& {\left[\hat{\bullet}-1.96 \sigma_{\bullet}, \hat{\bullet}+1.96 \sigma_{\bullet}\right](\text { original scale })} \\
& {\left[\hat{\bullet} \exp \left(-1.96 \sigma_{\log } \hat{\bullet}\right), \widehat{\bullet} \exp \left(1.96 \sigma_{\log } \hat{\bullet}\right)\right](\log \text {-scale })}
\end{aligned}
$$

where σ_{\bullet} denotes the standard deviation of the estimate. As shown here different CIs exists and which one to use only really matters with small samples.

Illustration:

- Toy example with 4 patients:
$\lambda=\frac{1+0+1+0}{2+8+5.9+8}=0.08368$ per person.month or 83.68 per 1000 person.month or
$\lambda=\frac{1+0+1+0}{2 / 12+8 / 12+5.9 / 12+8 / 12}=1.004$ per person.year
8 months risk: $r(8$ months $)=2 / 4=0.5=50 \%$
- COVID dataset

Incidence rate of COVID infection in Denmark

Cumulated number of cases/Number of individuals (here 5840035)
vs. Number of cases for the week/Number of individual never infected (from 5840035 to 2950435)

Risk of COVID infection
 from 2019-12-30 in Denmark

1 week risk of COVID infection in Denmark

3 Risk-rate relationship

Motivations:

- we are usually interested in the effect of an exposure on the risk of an event. Covariates, such as vaccine or wearing a mask, generally impact the instantenous risk, i.e. the rate/hazard.
- in presence of right-censoring, modeling the rate and deducing the risk avoids to model the censoring mechanism

Sequence of binary probability models

- simple model assuming piecewise constant hazard, e.g. hazard may be week-dependent

- π_{1} is the probability to have the event in the first time interval
- π_{2} is the probability to have the event in the second time interval for those who did not experience the event in the first time interval.
- π_{2} is the probability to have the event in the third time interval for those who did not experience the event in the first two time intervals.

Probability of getting the event:

$$
\begin{aligned}
\mathbb{P}[N=1, T \leq 3] & =\mathbb{P}[N=1, T=1]+\mathbb{P}[N=1, T=2]+\mathbb{P}[N=1, T=3] \\
& =\pi_{1}+\left(1-\pi_{1}\right) \pi_{2}+\left(1-\pi_{1}\right)\left(1-\pi_{2}\right) \pi_{3}
\end{aligned}
$$

Probability of not getting the event:

$$
1-\mathbb{P}[N=1, T \leq 3]=\left(1-\pi_{1}\right)\left(1-\pi_{2}\right)\left(1-\pi_{3}\right) \approx \exp \left(-\left(\pi_{1}+\pi_{2}+\pi_{3}\right)\right)=\exp \left(-\int_{0}^{3} \lambda(t) d t\right)
$$

- assuming constant hazard: $r(\tau) \approx 1-\exp (-\lambda \tau)$

〔 Approximation $r(\tau) \approx 1-\exp \left(-\int_{t=0}^{\tau} \lambda(t) d t\right)$ valid with $\lambda \ll 1$, e.g. small time intervals.

Illustration:

- Toy example with 4 patients: only two timepoints where infection can occur
- at 2 months: 1 infected and 3 healthy, i.e. 4 at risk $\pi_{1}=1 / 4$
- at 5.9 months: 1 infected and 1 healthy, i.e. 2 at risk $\pi_{2}=1 / 2$

So the risk at 8 months is $\left(1-\pi_{1}\right)\left(1-\pi_{2}\right)=3 / 8$

- COVID dataset: risk of infection or death between the start and the end of the period (771 days)

As the cumulated number of deaths divided by the population size
infection death
0.4947924200 .001129957

As 1 minus the product of 1 minus the weekly incidence rate
infection cases
0.4947924200 .001129957
which can be approximated by 1 minus the exponential of minus cumulated weekly incidence rate
infection cases
0.4882639900 .001129944

The approximation is very accurate for death as all incidence rate are small compared to one (max 0.00005154) but less accurate for infection as some incidence rate are not small compared to 1 (max 0.0509600).

4 Measures of association

We denote by:

- r_{E} risk in the exposed group (n_{E} individuals, D_{E} failures)
$\Omega_{E}=\frac{r_{E}}{1-r_{E}}$ odds in the exposed group
- $r_{\bar{E}}$ risk in the unexposed group ($n_{\bar{E}}$ individuals, $D_{\bar{E}}$ failures)
$\Omega_{\bar{E}}=\frac{r_{\bar{E}}}{1-r_{\bar{E}}}$ odds in the unexposed group

Definition ${ }^{2}$

- risk difference: $R D=r_{E}-r_{\bar{E}}$
- relative risk / risk ratio: $R R=\frac{r_{E}}{r_{\bar{E}}}$
- risk odds ratio $O R=\frac{r_{E}}{r_{\bar{E}}}$

$-R D>0, R R>1, O R>1$: "harmful" (increased occurence of the outcome when exposed)
$-R D=0, R R=0, O R=0:$ "independent"
(same occurence of the outcome for exposed and no-exposed)
- $R D<0, R R<1, O R<1$ "protective"
(decreased occurence of the outcome when exposed)

Estimation:

- risk difference: $\widehat{R D}=\widehat{r}_{E}-\widehat{r}_{\bar{E}}=\frac{D_{E}}{n_{E}}-\frac{D_{\bar{E}}}{n_{\bar{E}}}$
- relative risk / risk ratio: $\widehat{R R}=\frac{\widehat{r}_{E}}{r_{\bar{E}}}=\frac{D_{E}}{n_{E}} / \frac{D_{\bar{E}}}{n_{\bar{E}}}$
- odds ratio $\widehat{O R}=\frac{\widehat{\Omega}_{E}}{\widehat{\Omega}_{\bar{E}}}=\frac{D_{B}}{n_{E}-D_{E}} / \frac{D_{\bar{E}}}{n_{\bar{E}}-D_{\bar{E}}}$

Uncertainty:

- risk difference: $\sigma_{\widehat{R D}}=\sqrt{\sigma_{\widehat{r}_{E}}^{2}+\sigma_{\widehat{r}_{\bar{E}}}^{2}}=\sqrt{\frac{D_{E}\left(n_{E}-D_{E}\right)}{n_{E}^{3}}+\frac{D_{\bar{E}}\left(n_{\bar{F}}-D_{\bar{E}}\right)}{n_{E}^{3}}}$
- relative risk / risk ratio: $\sigma_{\log \widehat{R R}}=\sqrt{\frac{\sigma_{r_{E}}^{2}}{\widehat{r}_{E}^{2}}+\frac{\sigma_{r_{\bar{E}}}^{2}}{r_{\bar{E}}^{2}}}=\sqrt{\frac{1}{D_{E}}-\frac{1}{n_{E}}+\frac{1}{D_{\bar{E}}}-\frac{1}{n_{\bar{E}}}}$
- odds ratio $\sigma_{\log \widehat{O R}}=\sqrt{\frac{1}{D_{E}}+\frac{1}{n_{E}-D_{E}}+\frac{1}{D_{\bar{E}}}+\frac{1}{n_{\bar{E}}-D_{\bar{E}}}}$

[^1]
5 Test of association: Chi-square test

As in the previous section we consider 2 groups and a binary outcome. We can summarize the data using the following 2×2 table:

	Outcome	Survival	Failure
Group	Total		
Non-Exposed	$a=n_{\bar{E}}-D_{\bar{E}}$	$b=D_{\bar{E}}$	$n_{\bar{E}}$
Exposed	$c=n_{E}-D_{E}$	$d=D_{E}$	n_{E}
Total		n	

As also mentioned in the previous section, the association between the outcome and the group variable can be assessed using an odds ratio (θ). It can be estimated by:

$$
\widehat{\theta}=\frac{D_{E}}{n_{E}-D_{E}} / \frac{D_{\bar{E}}}{n_{\bar{E}}-D_{\bar{E}}}
$$

Testing the independence between the outcome and the group variable (i.e. $\theta=1$) can be performed using a chi-squared test statistic:

$$
\begin{aligned}
t_{\chi^{2}} & =\left(n_{\bar{E}}+n_{E}\right) \frac{\left(n_{\bar{E}}-D_{\bar{E}}\right) D_{E}-\left(n_{E}-D_{E}\right) D_{\bar{E}}}{n_{\bar{E}} n_{E}\left(D_{E}+D_{\bar{E}}\right)\left(n_{E}+n_{\bar{E}}-D_{\bar{E}}-D_{E}\right)} \\
& =n \frac{(a d-b c)}{(a+b)(c+d)(a+c)(b+d)}
\end{aligned}
$$

which under $\theta=1$ follows asymptotically a chi-square distribution with 1 degree of freedom.
Note 1: while commonly used and easy to explain, there are (often) better alternatives:

- testing whether the difference between probability of failure is 0 (or the ratio is 1). It is usually more interpretable (probability are easier to understand than odds ratios) but is not valid in case control studies and may not always be feasible when adjusting for covariates.
- in small samples: the Fisher's exact test is preferable (better type 1 error control)

Note 2: The chi-squared test is identical to a score test from a logistic regression ${ }^{3}$

[^2]
6 In R

For illustration, we will use the dataset BrCa which originates from a study about survival after breast cancer. The dataset contains information about the age and grade of the tumor, survival time after surgery, and outcome (alive or death) at end of follow-up.

6.1 Data management

We start by loading packages

```
library(ggplot2)
library(Epi)
library(survival)
```

and then load the dataset BrCa :

```
data(BrCa, package = "Epi")
```

To facilitate data visualization we restrict the dataset to columns useful for this demonstration:

```
BrCaR <- BrCa[,c("pid","age","grade","tox","xst")]
```

and rename the columns with more intuitive names:

```
names(BrCaR) <- c("id","age","grade","time","status")
```

We will re-order the dataset by time:

```
BrCaR <- BrCaR[order(BrCaR$time),]
```

and convert categorical variables to factor

```
BrCaR$id <- as.factor(BrCaR$id)
BrCaR$grade <- as.factor(BrCaR$grade)
BrCaR$status <- factor(BrCaR$status, levels = c("Alive","Dead"))
```

while keeping a binary version of the outcome (i.e. taking value 0 or 1):

```
BrCaR$status.bin <- as.numeric(BrCaR$status=="Dead")
```

We will also consider a subset of the dataset. To do so we identify the lines in the dataset corresponding to patient of grade 2 :

```
index.grade2 <- which(BrCaR$grade == 2)
str(index.grade2)
```


for which the patient was alive at the end of the study:
index.Alive <- which (BrCaR\$status == "Alive")
index.grade2Alive <- intersect(index.grade2,index.Alive)

Repeating the operation we can select the 5 patients for each combination of grade $2 / 3$ and alive/dead:

```
index.grade3 <- which(BrCaR$grade == 3)
index.Dead <- which(BrCaR$status == "Dead")
BrCaR.subset <- rbind(BrCaR[intersect(index.grade2,index.Alive)[50:54],],
    BrCaR[intersect(index.grade2,index.Dead) [50:54],],
    BrCaR[intersect(index.grade3,index.Alive) [50:54],],
    BrCaR[intersect(index.grade3,index.Dead)[50:54],])
```


6.2 Data visualization

We can display the first 6 lines with the head method (and the last 6 lines with the tail method)

```
head(BrCaR)
## head(BrCaR, 10) ## first 10 lines
## tail(BrCaR) ## last 6 lines
```

	id age grade					time
status	status.bin					
1905	407	54	2	0.09856263	Alive	0
2945	3004	75	3	0.12320329	Dead	1
2334	2962	66	3	0.17522246	Dead	1
2949	2956	87	3	0.20260096	Dead	1
2815	2979	75	3	0.26557153	Dead	1
1956	537	58	3	0.27652293	Alive	0

The str method provides a concise display of the data:

```
str(BrCaR)
## summary(BrCaR) ## alternative
```

```
'data.frame': 2982 obs. of 6 variables:
$ id : Factor w/ 2982 levels "1","2","3","4",..: 402 29792937 29312954 531 2942 629 838 1
$ age : int 54 75 66 87 75 58 73 77 77 53 ...
$ grade : Factor w/ 2 levels "2","3": 1 2 2 2 2 2 1 2 2 2 ...
$ time : num 0.0986 0.1232 0.1752 0.2026 0.2656 ...
$ status : Factor w/ 2 levels "Alive","Dead": 1 2 2 2 2 1 2 2 1 1 ...
$ status.bin: num 0 1 1 1 1 0 1 1 0 0 ...
```

A boxplot of the time to event per type of event can be obtain using ggplot:

```
ggBox <- ggplot(BrCaR) + geom_boxplot(aes(y = time, fill = status))
ggBox
```

A display individual trajectories (here on a subset of the data) can also be obtained first displaying the time at risk using a segment and then points to indicate the type of event:

```
ggTraj <- ggplot(BrCaR.subset)
ggTraj <- ggTraj + geom_segment(aes(x = age, xend = age + time, y = id, yend = id,
    color = grade))
ggTraj <- ggTraj + geom_point(aes(x = age + time, y = id, shape = status), size = 2)
ggTraj
```


6.3 Contingency tables

The function table creates a 2 by 2 table, counting the number of occurences of the possible combinations between two variables. The function rowSums and colSums can be used to obtain, respectively, the total by row and by column:

t22 <- table(BrCaR\$grade,	rowSums (t22)	colSums (t22)
t22		
	7942188	17101272
outcome		
Alive Dead		
2532262		
311781010		

The functions xtabs can be used to sum values of variables per group:

```
t23.end <- xtabs(cbind(n=1, death = status.bin,person.year=time) ~ grade,
    data = BrCaR)
t23.end
```

grade	n	death	person.year
2	794.000	262.000	6323.439
3	2188.000	1010.000	14947.300

To restrict to 10 years follow-up, we should only count deaths happening within the first 10 years and limit to 10 the number of person.year for a given person:

```
t23.10 <- xtabs(cbind(n=1,
    death = (time<=10)*status.bin,
    person.year=pmin(time,10)) ~ grade,
    data = BrCaR)
```

t23. 10

grade	n	death	person.year
2	794.000	231.000	5852.509
3	2188.000	940.000	14149.946

6.4 Measures of disease frequency

Incidence rate: we estimate the incidence by dividing the number of deaths and person years:

```
D <- t23.10[,"death"]
Y <- t23.10[,"person.year"]
```

We can do that for each grade, leveraging that with / the division is performed element-wise when calling vectors:

```
lambda <- D/Y
lambda
```

 2
 3
 0.039470250 .06643135

Confidence intervals can then be computed according to the previously seen formula:

```
qz <- qnorm(0.975) ## 1.96
sigma_loglambda <- 1/sqrt(D)
cbind(estimate = lambda,
    lower = lambda*exp(-qz*sigma_loglambda),
    upper = lambda*exp(qz*sigma_loglambda))
```

```
    estimate lower upper
2 0.03947025 0.03469484 0.04490294
30.06643135 0.06231749 0.07081679
```

Alternatively, one can use the glm function:
(the estimate is the same but the confidence intervals slightly difference as they are computed using a different method - profile likelihood)

```
## restrict to 10 years
BrCaR$status.bin10 <- BrCaR$status.bin*(BrCaR$time<=10)
BrCaR$time10 <- pmin(BrCaR$time,10)
e.pois <- glm(status.bin10 ~ grade-1, offset = log(time10),
    family = poisson(link="log"), data = BrCaR)
cbind(estimate = exp(coef(e.pois)), exp(confint(e.pois)))
```

Waiting for profiling to be done...
estimate $2.5 \% \quad 97.5 \%$
grade2 0.039470250 .034596580 .04478111
grade3 0.066431350 .062274540 .07076900

Risk: if there was no censoring ($\widehat{\Delta}$) the risk could be computed by taking the ratio between the number of death and the population size:

```
n <- t23.10[,"n"]
r <- D/n
r
```

```
    2 3
0.2909320 0.4296161
```

Confidence intervals could then be computed using another previously mentioned formula:

```
qz <- qnorm(0.975) ## 1.96
sigma_r <- sqrt(r*(1-r)/n)
cbind(estimate = r,
    lower = r - qz*sigma_r,
    upper = r + qz*sigma_r)
```

```
    estimate lower upper
2 0.2909320 0.2593400 0.322524
30.4296161 0.4088742 0.450358
```

Alternatively, still if there was no censoring ($\widehat{\text {) }}$), an exact confidence interval could be obtained via the function binom.test:

```
stats::binom.test(x = D[1], n = n[1])
## stats::binom.test(x = c(D[1], n[1] - D[1])) ## same
```

Exact binomial test
data: $\mathrm{D}[1]$ and n [1]
number of successes $=231$, number of trials $=794$, p-value $<2.2 e-16$
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.25953580 .3238894
sample estimates:
probability of success
0.290932

Yet another way, still assuming no censoring ($\widehat{\wedge}$), would be to use glm:
e.logitr <- glm(status.bin10 ~ grade-1, family = binomial(link="identity"), data $=\mathrm{BrCaR}$) cbind(estimate $=$ coef (e.logitr) , confint(e.logitr))

Waiting for profiling to be done...
estimate $2.5 \% \quad 97.5 \%$
grade2 0.2909320 0.2600490 0.3231635
grade3 0.42961610 .40896570 .4504314
A proper way to compute the risk in presence of right-censoring (assuming independent censoring) is to use the Kaplan-Meier estimator (more on that later on Day 7):

```
e.KM <- survfit(Surv(time, status) ~ grade, data=BrCaR)
summary(e.KM, time = c(0.3, 0.55, 10))
```

Call: survfit(formula $=$ Surv(time, status) \sim grade, data $=\mathrm{BrCaR}$)

grade=2				
time	n.risk	n. event	$\operatorname{Pr}((\mathrm{s} 0))$	$\operatorname{Pr}($ Dead $)$
0.30	792	1	0.999	0.00126
0.55	790	1	0.997	0.00252
10.00	232	229	0.665	0.33481

grade=3				
time	n.risk	n. event	$\operatorname{Pr}((\mathrm{s} 0))$	$\operatorname{Pr}($ Dead $)$
0.30	2182	5	0.998	0.00229
0.55	2172	7	0.995	0.00549
10.00	453	928	0.510	0.48984

We can see substantial underestimation of the risk when treating censoring as no event (about 5% too low). These results can easily be replicated 'by hand' for the first timepoints where there are no ties (i.e. single event per timepoint)

- select the patients with grade 2 and focus on the first 5 timepoitns

```
BrCaR.grade2 <- BrCaR[index.grade2,]
BrCaR.grade2 <- BrCaR.grade2[BrCaR.grade2$time %in% BrCaR.grade2$time[1:5],]
BrCaR.grade2
```

	i	age		time	status	status.bin	status.bin10	time10
1905	407	54	2	0.09856263	Alive	0	0	0.09856263
2095	2967	73	2	0.27652293	Dead	1	1	0.27652293
1055	1147	60	2	0.44079399	Alive	0	0	0.44079399
2818	2147	40	2	0.54209447	Dead	1	1	0.54209447
2904	2998	76	2	0.58863791	Dead	1	1	0.58863791

- compute the hazard
atRisk <- length(index.grade2) -0:4
haz <- (BrCaR.grade2\$status=="Dead")/atRisk
haz
[1] 0.0000000000 .0012610340 .0000000000 .0012642230 .001265823
- use the product limit formula to deduce the risk:

1-cumprod (1-haz)
[1] 0.0000000000 .0012610340 .0012610340 .0025236620 .003786291

6.5 Measures of disease association

Incidence: we can compute the incidence difference / ratio directly from the estimated incidence:

```
ID <- lambda["3"]-lambda["2"]
ID
IR <- lambda["3"]/lambda["2"] ## select element named 3 or name 2
lambda[2]/lambda[1] ## same (select 2nd or 1st element)
```


3

0.0269611
1.683074

The unname function can be used to remove names:

```
IR <- unname(IR)
IR
```


[1] 1.683074

A confidence interval for the ratio can be obtained by summing the variance on the log scale:

```
sigma_logIR <- sqrt(sum(1/D))
c(estimate = IR,
    lower = IR / exp(qz * sigma_logIR),
    upper = IR * exp(qz * sigma_logIR))
```

estimate lower upper
1.6830741 .4574531 .943623

Alternatively the glm function can be used:

```
e.pois <- glm(status.bin10 ~ grade, offset = log(time10),
    family = poisson(link="log"), data = BrCaR)
cbind(exp(coef(e.pois)), exp(confint(e.pois)))
```

Waiting for profiling to be done...
$2.5 \% \quad 97.5 \%$
(Intercept) 0.039470250 .034596580 .04478111
$\begin{array}{lllll}\text { grade3 } & 1.68307401 & 1.46040680 & 1.94783461\end{array}$
or the effx function from the Epi package:

```
effx(response = BrCaR$status.bin,
    exposure = BrCaR$grade,
    fup = BrCaR$time, type = "failure", eff = "RR")
## use eff = "RD" for incidence difference
```

```
response : BrCaR$status.bin
type : failure
exposure : BrCaR$grade
BrCaR$grade is a factor with levels: 2 / 3
baseline is 2
effects are measured as rate ratios
```


effect of BrCaR grade on BrCaR status.bin
number of observations 2982

Effect	2.5%	97.5%
1.63	1.42	1.87

Test for no effects of exposure on 1 df: p-value= $1.56 \mathrm{e}-13$
There were 50 or more warnings (use warnings() to see the first 50)
risk: similarly we can compute the risk difference or risk ratio directly from the estimated risk:

```
r [2]-r [1]
r[2]/r[1]
```

3
0.1386841

3
1.476689
or from glm, still assuming no censoring ($仓$):
e.logitr <- glm(status.bin10 ~ grade, family = binomial(link="identity"), data = BrCaR) cbind(coef(e.logitr), confint(e.logitr)) [2,]

Waiting for profiling to be done...
2.5 \% 97.5%
0.13868410 .10046100 .1760154

```
e.logitr <- glm(status.bin10 ~ grade, family = binomial(link="log"), data = BrCaR)
```

cbind(exp(coef(e.logitr)), exp(confint(e.logitr))) [2,]
Waiting for profiling to be done...
2.5 \% 97.5%
1.4766891 .3148241 .667895

To account for censoring, we would need to extract the risks obtained with the Kaplan-Meier estimator:

```
eS.KM <- summary(e.KM,times=10)
RD <- diff(eS.KM$pstate[,2])
RD
```

[1] 0.1550246
the associated standard errors ${ }^{4}$, and deduce the confidence interval:

```
sigma_RD <- sqrt(sum(eS.KM$std.err [, 2]^2))
c(estimate = RD,
    lower = RD - qz * sigma_RD,
    upper = RD + qz * sigma_RD)
```

 estimate lower upper
 0.15502460 .11077350 .1992758

[^3]
7 Likelihood theory

Maximum likelihood: method using an iid ${ }^{5}$ sample to estimate model parameters

- define a statistical model (blinded to the data)

$$
\mathbb{P}[Y=1]=\pi \text { and } \mathbb{P}[Y=0]=1-\pi
$$

- express the likelihood (probability of observing the data given the model)

We followed n patients and D of them died. The likelihood of a death is π and of a survival is $1-\pi$.
So the likelihood associated to the sample is $\mathcal{L}(\pi)=\prod_{i=1}^{n} \mathcal{L}_{i}(\pi)=\pi^{D}(1-\pi)^{n-D}$.

- express the log-likelihood (probability of observing the data given the model)

$$
\ell(\pi)=D \log (\pi)+(n-D) \log (1-\pi)
$$

See left panel of figure 1 for an illustration.

- find the parameter value maximizing the likelihood (MLE), i.e. solve ${ }^{6} \frac{d \ell(\pi)}{d \pi}=0$

The first derivative of the likelihood (called score) is $\frac{d e(\pi)}{d \pi}=\frac{D}{\pi}-\frac{n-D}{1-\pi}$. See the middle panel of figure 1 for an illustration. It take value 0 at $\widehat{\pi}=\frac{D}{n}$.

- quantify the variance of the MLE
- express the second derivative of the likelihood

$$
\frac{d^{2} \ell(\pi)}{d \pi^{2}}=-\frac{D}{\pi^{2}}-\frac{n-D}{(1-\pi)^{2}}=-\frac{D-2 \pi D+\pi^{2} n^{2}}{\pi^{2}(1-\pi)^{2}}=-\frac{n \widehat{\pi}\left(1-2 \pi+\pi^{2} / \widehat{\pi}\right)}{\pi^{2}(1-\pi)^{2}}
$$

- evaluate the opposite of its inverse at the MLE

$$
\widehat{\sigma}_{\widehat{\pi}}^{2}=-\left\{\left.\left(\frac{d^{2} \ell(\pi)}{d \pi^{2}}\right)\right|_{\pi=\widehat{\pi}}\right\}^{-1}=\frac{\widehat{\pi}(1-\widehat{\pi})}{n}
$$

- For large enough sample size, the MLE is unbiased and normally distributed $\widehat{\pi} \sim \mathcal{N}\left(\pi, \sigma_{\hat{p i}}^{2}\right)$

Wald test: use the asymptotic distribution of the estimate to test an hypothesis
$\mathcal{H}_{0}: \pi=0.25$, Wald statistic $t_{W}=\frac{\widehat{\pi}-0.25}{\sigma_{\widehat{\pi}}} \sim \mathcal{N}(0,1)$, p-value $p_{W}=2\left(1-F_{\mathcal{N}}\left(\left|t_{W}\right|\right)\right)$
where $F_{\mathcal{N}}$ is the cdf ${ }^{7}$ of a standard normal distribution
Likelihood ratio test (LRT): use the log-likelihood under a specific restriction to test an hypothesis
$\mathcal{H}_{0}: \pi=0.25$, maximum log-likelihood $\ell(\widehat{\pi})$, log-likelihood under $\mathcal{H}_{0} \ell(0.25)$,
LRT statistic $t_{L R T}=-2(\ell(0.25)-\ell(\widehat{\pi})) \sim \chi_{1}^{2}$, p-value $\left.p_{W}=1-F_{\chi_{1}^{2}}\left(t_{L R T}\right)\right)$
where $F_{\chi_{1}^{2}}$ is the cdf of a chi-squared distribution with one degree of freedom.

[^4]

Figure 1: Illustration of the log-likelihood function, its first derivative, and the variance of the estimate for $n=100$ and $D=33$.

[^0]: ${ }^{1}$ these numbers are given for illustrative purpose and may not match the official numbers.

[^1]: ${ }^{2}$ similar definitions hold for the prevalence and the incidence rate

[^2]: ${ }^{3}$ more on that later in the course

[^3]: ${ }^{4}$ The confidence interval are computed using a transformation (log by default) but the standard error is the untransformed one. This can be verified by re-fitting the survfit object with the argument conf.type="plain"

[^4]: ${ }^{5}$ independent and identically distributed
 ${ }^{6}$ one should also check that the second derivative of the likelihood is negative
 ${ }^{7}$ cumulative distribution function

