
Lecture 2: Measures of disease frequency and association
Key concepts

1 Data representation
Typical epidemiological data correspond to n individuals (here n = 4) followed over time until a specific
event (here infection) or until the end of study (here τ = 8 months):
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In an ideal study, each subject may experience 3 states:

• not at risk: the subject cannot experience the event (before the solid line)
(e.g. COVID infection: COVID did not exist yet, pregnancy: outside fertility age)

• at risk: the subject may experience the event at any time (solid line)
(ideally the start of the at risk time coincide with the start of the study)

• event: the subject experiences the event (squares). Thereafter he is no longer at risk.
△! The subject can also experience competing events preventing the event of interest to occur
(e.g. death) or we might lose track of him at a certain time (censoring, here circles)

Notations: 1x indicator function of x being true and a ∧ b minimum between a and b
– time to event: T

– right-censored time: T̃ = T ∧ τ time to death stopped at the end of study

– event occurence: N(t) = 1T ≤t i.e. 0 (healthy/survival before time T )
1 (sick/death/failure after time T )

– observable occurence: Ñ(t) = 1T ≤t∧τ

– health status: H(t) = 1 if sick (still affect by the event) otherwise 0
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On the computer there are various (sometimes equivalent) way to store the data:

Individual data: one line per subject

patient inclusion end time status
id1 01-08-2020 01-10-2020 2.0 dead
id2 01-07-2020 01-03-2021 8.0 alive
id3 02-05-2020 01-11-2021 5.9 dead
id4 01-05-2020 01-01-2021 8.0 alive

Aggregated data: one line per timepoint

time n.atRisk dead n-D D Y
0.0 4 0 4 0 0.0
2.0 4 1 3 1 8.0
5.9 3 1 2 2 19.7
8.0 2 0 2 2 23.9

The aggregated format provides a much more compact data representation. This can be critical for
real life dataset that may consider millions of individuals, like for the COVID pandemic1:

date country atRisk cases
1: 2019-12-30 Denmark 5840045 10
2: 2020-01-06 Denmark 5840035 12
3: 2020-01-13 Denmark 5840023 8
4: 2020-01-20 Denmark 5840015 15
5: 2020-01-27 Denmark 5840000 13

---
130: 2022-06-20 Denmark 3004251 8696
131: 2022-06-27 Denmark 2995555 10720
132: 2022-07-04 Denmark 2984835 12264
133: 2022-07-11 Denmark 2972571 11965
134: 2022-07-18 Denmark 2960606 10171

date country atRisk cases
1: 2019-12-30 France 67656682 0
2: 2020-01-06 France 67656682 0
3: 2020-01-13 France 67656682 0
4: 2020-01-20 France 67656682 3
5: 2020-01-27 France 67656679 3

---
130: 2022-06-20 France 37432876 468726
131: 2022-06-27 France 36964150 742395
132: 2022-07-04 France 36221755 916068
133: 2022-07-11 France 35305687 694877
134: 2022-07-18 France 34610810 530397

△! Generally this compact representation is performed at the expense of a loss of information
about subject’s covariates or inclusion time. It makes it difficult to account for heterogeneity between
populations (e.g. age unbalance) or time trends.

A simple (but crude) way to compare two populations is via a 2 by 2 table, containing the data
relative to each population at a specific timepoint, e.g. week 29 in 2022:

at risk infected
Denmark 2960606 10171
France 34610810 530397

Notations:
– cumulative number of events: D(t) = ∑n

i=1 Ni(t)

– remaining event-free individuals: n − D(t)

– cumulative follow-up time: Y (t) = ∑n
i=1 T̃i ∧ t

1these numbers are given for illustrative purpose and may not match the official numbers.
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2 Measures of disease frequency
Quantity of interest (deterministic)

• prevalence: π(t) = P [H(t) = 1] ∈ [0, 1]

• odds: Ω(t) = π(t)
1−π(t) ∈ [0, +∞[.

Rare event: Ω ≈ π when prevalence is small.

• hazard or rate: λ(t) = lim
τ→0

P[t<T ≤t+τ,N(t+τ)=1|T >t]
τ

• t-years risk: r(t) = P [0 < T ≤ t, N(t) = 1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6
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Estimation (stochastic)

• cross sectional study a time t with a single group: (Ni(t))i∈{1,...,n}

– prevalence: π̂(t) = 1
n

∑n
i=1 Hi(t) = number of person sick at time t

number of people in the population

– odds: Ω̂(t) = π̂(t)
1−π̂(t) .

• τ -years cohort study with a single group:
(
Ñi(t), T̃i

)
i∈{1,...,n},t∈[0,τ ]

– incidence rate: λ̂(τ) =
∑n

i=1 Ñi(τ)∑n

i=1 T̃i
= D̃(τ)

Ỹ
= number of events up to time τ

number of person time at risk △! has a unit!

– τ -years risk: r̂(τ) = 1
n

∑n
i=1 Ñi(τ) = D̃(τ)

n
= number of events up to time τ

number of persons at risk

Uncertainty (stochastic, the dependency on time is dropped to simplify the expressions)

1. prevalence: CIπ̂,95% = [π̂ − 1.96σπ̂ , π̂ + 1.96 σπ̂ ] where σπ̂ =
√

π(1−π)
n

2. odds: CIΩ̂,95% =
[
Ω̂ exp

(
−1.96 σlog Ω̂

)
, Ω̂ exp

(
1.96 σlog Ω̂

) ]
where σlog Ω̂ =

√
1
D

+ 1
n−D

3. incidence rate: CI
λ̂,95% =

[
λ̂τ exp

(
−1.96σlog λ̂

)
, λ̂ exp

(
1.96σlog λ̂

) ]
where σlog λ̂

= 1√
D̃

4. τ -years risk: CIr̂,95% = [r̂ − 1.96 σr̂ , r̂ + 1.96 σr̂ ] where σr̂ =
√

r(1−r)
n

Confidence intervals:
Even though the estimate •̂ will not exactly match the quantity of interest •, we can derive an

interval CÎ•,95% containing the target with high probability (here 0.95), e.g.:
[•̂ − 1.96 σ•̂ , •̂ + 1.96 σ•̂ ] (original scale)[
•̂ exp

(
−1.96 σlog •̂

)
, •̂ exp

(
1.96 σlog •̂

) ]
(log-scale)

where σ•̂ denotes the standard deviation of the estimate. As shown here different CIs exists and
which one to use only really matters with small samples.
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Illustration:

• Toy example with 4 patients:

λ = 1+0+1+0
2+8+5.9+8 = 0.08368 per person.month or 83.68 per 1000 person.month

or
λ = 1+0+1+0

2/12+8/12+5.9/12+8/12 = 1.004 per person.year

8 months risk: r(8 months) = 2/4 = 0.5 = 50%

• COVID dataset
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3 Risk-rate relationship
Motivations:

• we are usually interested in the effect of an exposure on the risk of an event. Covariates, such as
vaccine or wearing a mask, generally impact the instantenous risk, i.e. the rate/hazard.

• in presence of right-censoring, modeling the rate and deducing the risk avoids to model the cen-
soring mechanism
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Sequence of binary probability models

• simple model assuming piecewise constant hazard, e.g. hazard may be week-dependent

1-π1

π2

1-π2

π3

1-π3

Time1 2 3

event

event

event

event-free

π1 • π1 is the probability to have the event in the first
time interval

• π2 is the probability to have the event in the sec-
ond time interval for those who did not experience
the event in the first time interval.

• π2 is the probability to have the event in the third
time interval for those who did not experience the
event in the first two time intervals.

Probability of getting the event:

P [N = 1, T ≤ 3] = P [N = 1, T = 1] + P [N = 1, T = 2] + P [N = 1, T = 3]
= π1 + (1 − π1)π2 + (1 − π1)(1 − π2)π3

Probability of not getting the event:

1 − P [N = 1, T ≤ 3] = (1 − π1)(1 − π2)(1 − π3) ≈ exp(−(π1 + π2 + π3)) = exp(−
∫ 3

0
λ(t)dt)

• assuming constant hazard: r(τ) ≈ 1 − exp(−λτ)

△! Approximation r(τ) ≈ 1 − exp(−
∫ τ

t=0 λ(t)dt) valid with λ << 1, e.g. small time intervals.
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Illustration:

• Toy example with 4 patients: only two timepoints where infection can occur

- at 2 months: 1 infected and 3 healthy, i.e. 4 at risk π1 = 1/4
- at 5.9 months: 1 infected and 1 healthy, i.e. 2 at risk π2 = 1/2

So the risk at 8 months is (1 − π1)(1 − π2) = 3/8

• COVID dataset: risk of infection or death between the start and the end of the period (771 days)

As the cumulated number of deaths divided by the population size

infection death
0.494792420 0.001129957

As 1 minus the product of 1 minus the weekly incidence rate

infection cases
0.494792420 0.001129957

which can be approximated by 1 minus the exponential of minus cumulated weekly incidence rate

infection cases
0.488263990 0.001129944

The approximation is very accurate for death as all incidence rate are small compared to one (max
0.00005154) but less accurate for infection as some incidence rate are not small compared to 1 (max
0.0509600).
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4 Measures of association
We denote by:

• rE risk in the exposed group (nE individuals, DE failures)
ΩE = rE

1−rE
odds in the exposed group

• rE risk in the unexposed group (nE individuals, DE failures)
ΩE = r

E

1−r
E

odds in the unexposed group

Definition2

• risk difference: RD = rE − rE

• relative risk / risk ratio: RR = rE

r
E

• risk odds ratio OR = rE

r
E

(graph courtesy of Paul Blanche)

− RD > 0, RR > 1, OR > 1: "harmful"
(increased occurence of the outcome when exposed)

− RD = 0, RR = 0, OR = 0: "independent"
(same occurence of the outcome for exposed and no-exposed)

− RD < 0, RR < 1, OR < 1 "protective"
(decreased occurence of the outcome when exposed)

Estimation:

• risk difference: R̂D = r̂E − r̂E = DE

nE
− D

E

n
E

• relative risk / risk ratio: R̂R = r̂E

r̂
E

= DE

nE

/
D

E

n
E

• odds ratio ÔR = Ω̂E

Ω̂
E

= DE

nE−DE

/
D

E

n
E

−D
E

Uncertainty:

• risk difference: σ
R̂D

=
√

σ2
r̂E

+ σ2
r̂

E

=
√

DE(nE−DE)
n3

E
+ D

E
(n

E
−D

E
)

n3
E

• relative risk / risk ratio: σlog R̂R
=

√√√√σ2
r̂E

r̂2
E

+
σ2

r̂
E

r̂2
E

=
√

1
DE

− 1
nE

+ 1
D

E
− 1

n
E

• odds ratio σlog ÔR
=

√
1

DE
+ 1

nE−DE
+ 1

D
E

+ 1
n

E
−D

E

2similar definitions hold for the prevalence and the incidence rate
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5 Test of association: Chi-square test
As in the previous section we consider 2 groups and a binary outcome. We can summarize the data
using the following 2x2 table:

Group
Outcome Survival Failure Total

Non-Exposed a = nE − DE b = DE nE

Exposed c = nE − DE d = DE nE

Total n

As also mentioned in the previous section, the association between the outcome and the group
variable can be assessed using an odds ratio (θ). It can be estimated by:

θ̂ = DE

nE − DE

/
DE

nE − DE

Testing the independence between the outcome and the group variable (i.e. θ = 1) can be performed
using a chi-squared test statistic:

tχ2 = (nE + nE) (nE − DE)DE − (nE − DE)DE

nEnE(DE + DE)(nE + nE − DE − DE)

= n
(ad − bc)

(a + b)(c + d)(a + c)(b + d)

which under θ = 1 follows asymptotically a chi-square distribution with 1 degree of freedom.

Note 1: while commonly used and easy to explain, there are (often) better alternatives:

• testing whether the difference between probability of failure is 0 (or the ratio is 1). It is usually
more interpretable (probability are easier to understand than odds ratios) but is not valid in case
control studies and may not always be feasible when adjusting for covariates.

• in small samples: the Fisher’s exact test is preferable
(better type 1 error control)

Note 2: The chi-squared test is identical to a score test from a logistic regression3

3more on that later in the course
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6 In
For illustration, we will use the dataset BrCa which originates from a study about survival after breast
cancer. The dataset contains information about the age and grade of the tumor, survival time after
surgery, and outcome (alive or death) at end of follow-up.

6.1 Data management
We start by loading packages
library(ggplot2)
library(Epi)
library(survival)

and then load the dataset BrCa:
data(BrCa, package = "Epi")

To facilitate data visualization we restrict the dataset to columns useful for this demonstration:
BrCaR <- BrCa[,c("pid","age","grade","tox","xst")]

and rename the columns with more intuitive names:
names(BrCaR) <- c("id","age","grade","time","status")

We will re-order the dataset by time:
BrCaR <- BrCaR[order(BrCaR$time),]

and convert categorical variables to factor
BrCaR$id <- as.factor(BrCaR$id)
BrCaR$grade <- as.factor(BrCaR$grade)
BrCaR$status <- factor(BrCaR$status, levels = c("Alive","Dead"))

while keeping a binary version of the outcome (i.e. taking value 0 or 1):
BrCaR$status.bin <- as.numeric(BrCaR$status=="Dead")

We will also consider a subset of the dataset. To do so we identify the lines in the dataset corre-
sponding to patient of grade 2:
index.grade2 <- which(BrCaR$grade == 2)
str(index.grade2)

int [1:794] 1 7 15 20 24 32 44 50 51 60 ...

for which the patient was alive at the end of the study:
index.Alive <- which(BrCaR$status == "Alive")
index.grade2Alive <- intersect(index.grade2,index.Alive)
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Repeating the operation we can select the 5 patients for each combination of grade 2/3 and alive/dead:

index.grade3 <- which(BrCaR$grade == 3)
index.Dead <- which(BrCaR$status == "Dead")
BrCaR.subset <- rbind(BrCaR[intersect(index.grade2,index.Alive)[50:54],],

BrCaR[intersect(index.grade2,index.Dead)[50:54],],
BrCaR[intersect(index.grade3,index.Alive)[50:54],],
BrCaR[intersect(index.grade3,index.Dead)[50:54],])

6.2 Data visualization
We can display the first 6 lines with the head method (and the last 6 lines with the tail method)
head(BrCaR)
## head(BrCaR, 10) ## first 10 lines
## tail(BrCaR) ## last 6 lines

id age grade time status status.bin
1905 407 54 2 0.09856263 Alive 0
2945 3004 75 3 0.12320329 Dead 1
2334 2962 66 3 0.17522246 Dead 1
2949 2956 87 3 0.20260096 Dead 1
2815 2979 75 3 0.26557153 Dead 1
1956 537 58 3 0.27652293 Alive 0

The str method provides a concise display of the data:
str(BrCaR)
## summary(BrCaR) ## alternative

’data.frame’: 2982 obs. of 6 variables:
$ id : Factor w/ 2982 levels "1","2","3","4",..: 402 2979 2937 2931 2954 531 2942 629 838 1636 ...
$ age : int 54 75 66 87 75 58 73 77 77 53 ...
$ grade : Factor w/ 2 levels "2","3": 1 2 2 2 2 2 1 2 2 2 ...
$ time : num 0.0986 0.1232 0.1752 0.2026 0.2656 ...
$ status : Factor w/ 2 levels "Alive","Dead": 1 2 2 2 2 1 2 2 1 1 ...
$ status.bin: num 0 1 1 1 1 0 1 1 0 0 ...
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A boxplot of the time to event per type of event can be obtain using ggplot:
ggBox <- ggplot(BrCaR) + geom_boxplot(aes(y = time, fill = status))
ggBox

A display individual trajectories (here on a subset of the data) can also be obtained first displaying
the time at risk using a segment and then points to indicate the type of event:
ggTraj <- ggplot(BrCaR.subset)
ggTraj <- ggTraj + geom_segment(aes(x = age, xend = age + time, y = id, yend = id,

color = grade))
ggTraj <- ggTraj + geom_point(aes(x = age + time, y = id, shape = status), size = 2)
ggTraj
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6.3 Contingency tables
The function table creates a 2 by 2 table, counting the number of occurences of the possible combinations
between two variables. The function rowSums and colSums can be used to obtain, respectively, the total
by row and by column:

t22 <- table(BrCaR$grade,
outcome = BrCaR$status)

t22

outcome
Alive Dead

2 532 262
3 1178 1010

rowSums(t22)

2 3
794 2188

colSums(t22)

Alive Dead
1710 1272
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The functions xtabs can be used to sum values of variables per group:
t23.end <- xtabs(cbind(n=1, death = status.bin,person.year=time) ∼ grade,

data = BrCaR)
t23.end

grade n death person.year
2 794.000 262.000 6323.439
3 2188.000 1010.000 14947.300

To restrict to 10 years follow-up, we should only count deaths happening within the first 10 years
and limit to 10 the number of person.year for a given person:
t23.10 <- xtabs(cbind(n=1,

death = (time<=10)*status.bin,
person.year=pmin(time,10)) ∼ grade,

data = BrCaR)
t23.10

grade n death person.year
2 794.000 231.000 5852.509
3 2188.000 940.000 14149.946

6.4 Measures of disease frequency
Incidence rate: we estimate the incidence by dividing the number of deaths and person years:
D <- t23.10[,"death"]
Y <- t23.10[,"person.year"]

We can do that for each grade, leveraging that with / the division is performed element-wise when
calling vectors:
lambda <- D/Y
lambda

2 3
0.03947025 0.06643135
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Confidence intervals can then be computed according to the previously seen formula:
qz <- qnorm(0.975) ## 1.96
sigma_loglambda <- 1/sqrt(D)
cbind(estimate = lambda,

lower = lambda*exp(-qz*sigma_loglambda),
upper = lambda*exp(qz*sigma_loglambda))

estimate lower upper
2 0.03947025 0.03469484 0.04490294
3 0.06643135 0.06231749 0.07081679

Alternatively, one can use the glm function:
(the estimate is the same but the confidence intervals slightly difference as they are computed using a
different method - profile likelihood)
## restrict to 10 years
BrCaR$status.bin10 <- BrCaR$status.bin*(BrCaR$time<=10)
BrCaR$time10 <- pmin(BrCaR$time,10)

e.pois <- glm(status.bin10 ∼ grade-1, offset = log(time10),
family = poisson(link="log"), data = BrCaR)

cbind(estimate = exp(coef(e.pois)), exp(confint(e.pois)))

Waiting for profiling to be done...
estimate 2.5 % 97.5 %

grade2 0.03947025 0.03459658 0.04478111
grade3 0.06643135 0.06227454 0.07076900

Risk: if there was no censoring (△! ) the risk could be computed by taking the ratio between the
number of death and the population size:
n <- t23.10[,"n"]
r <- D/n
r

2 3
0.2909320 0.4296161

Confidence intervals could then be computed using another previously mentioned formula:
qz <- qnorm(0.975) ## 1.96
sigma_r <- sqrt(r*(1-r)/n)
cbind(estimate = r,

lower = r - qz*sigma_r,
upper = r + qz*sigma_r)
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estimate lower upper
2 0.2909320 0.2593400 0.322524
3 0.4296161 0.4088742 0.450358

Alternatively, still if there was no censoring (△! ), an exact confidence interval could be obtained via
the function binom.test:
stats::binom.test(x = D[1], n = n[1])
## stats::binom.test(x = c(D[1], n[1] - D[1])) ## same

Exact binomial test

data: D[1] and n[1]
number of successes = 231, number of trials = 794, p-value < 2.2e-16
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.2595358 0.3238894

sample estimates:
probability of success

0.290932

Yet another way, still assuming no censoring (△! ), would be to use glm:
e.logitr <- glm(status.bin10 ∼ grade-1, family = binomial(link="identity"), data = BrCaR)
cbind(estimate = coef(e.logitr), confint(e.logitr))

Waiting for profiling to be done...
estimate 2.5 % 97.5 %

grade2 0.2909320 0.2600490 0.3231635
grade3 0.4296161 0.4089657 0.4504314

A proper way to compute the risk in presence of right-censoring (assuming independent censoring)
is to use the Kaplan-Meier estimator (more on that later on Day 7):
e.KM <- survfit(Surv(time, status) ∼ grade, data=BrCaR)
summary(e.KM, time = c(0.3, 0.55, 10))

Call: survfit(formula = Surv(time, status) ~ grade, data = BrCaR)

grade=2
time n.risk n.event Pr((s0)) Pr(Dead)
0.30 792 1 0.999 0.00126
0.55 790 1 0.997 0.00252

10.00 232 229 0.665 0.33481
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grade=3
time n.risk n.event Pr((s0)) Pr(Dead)
0.30 2182 5 0.998 0.00229
0.55 2172 7 0.995 0.00549

10.00 453 928 0.510 0.48984

We can see substantial underestimation of the risk when treating censoring as no event (about 5%
too low). These results can easily be replicated ’by hand’ for the first timepoints where there are no ties
(i.e. single event per timepoint)

• select the patients with grade 2 and focus on the first 5 timepoitns
BrCaR.grade2 <- BrCaR[index.grade2,]
BrCaR.grade2 <- BrCaR.grade2[BrCaR.grade2$time %in% BrCaR.grade2$time[1:5],]
BrCaR.grade2

id age grade time status status.bin status.bin10 time10
1905 407 54 2 0.09856263 Alive 0 0 0.09856263
2095 2967 73 2 0.27652293 Dead 1 1 0.27652293
1055 1147 60 2 0.44079399 Alive 0 0 0.44079399
2818 2147 40 2 0.54209447 Dead 1 1 0.54209447
2904 2998 76 2 0.58863791 Dead 1 1 0.58863791

• compute the hazard

atRisk <- length(index.grade2)-0:4
haz <- (BrCaR.grade2$status=="Dead")/atRisk
haz

[1] 0.000000000 0.001261034 0.000000000 0.001264223 0.001265823

• use the product limit formula to deduce the risk:

1-cumprod(1-haz)

[1] 0.000000000 0.001261034 0.001261034 0.002523662 0.003786291
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6.5 Measures of disease association
Incidence: we can compute the incidence difference / ratio directly from the estimated incidence:
ID <- lambda["3"]-lambda["2"]
ID

IR <- lambda["3"]/lambda["2"] ## select element named 3 or name 2
lambda[2]/lambda[1] ## same (select 2nd or 1st element)

3
0.0269611

3
1.683074

The unname function can be used to remove names:
IR <- unname(IR)
IR

[1] 1.683074

A confidence interval for the ratio can be obtained by summing the variance on the log scale:
sigma_logIR <- sqrt(sum(1/D))
c(estimate = IR,

lower = IR / exp(qz * sigma_logIR),
upper = IR * exp(qz * sigma_logIR))

estimate lower upper
1.683074 1.457453 1.943623

Alternatively the glm function can be used:
e.pois <- glm(status.bin10 ∼ grade, offset = log(time10),

family = poisson(link="log"), data = BrCaR)
cbind(exp(coef(e.pois)), exp(confint(e.pois)))

Waiting for profiling to be done...
2.5 % 97.5 %

(Intercept) 0.03947025 0.03459658 0.04478111
grade3 1.68307401 1.46040680 1.94783461
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or the effx function from the Epi package:
effx(response = BrCaR$status.bin,

exposure = BrCaR$grade,
fup = BrCaR$time, type = "failure", eff = "RR")

## use eff = "RD" for incidence difference

---------------------------------------------------------------------------
response : BrCaR$status.bin
type : failure
exposure : BrCaR$grade

BrCaR$grade is a factor with levels: 2 / 3
baseline is 2
effects are measured as rate ratios
---------------------------------------------------------------------------

effect of BrCaR$grade on BrCaR$status.bin
number of observations 2982

Effect 2.5% 97.5%
1.63 1.42 1.87

Test for no effects of exposure on 1 df: p-value= 1.56e-13
There were 50 or more warnings (use warnings() to see the first 50)

risk: similarly we can compute the risk difference or risk ratio directly from the estimated risk:
r[2]-r[1]
r[2]/r[1]

3
0.1386841

3
1.476689

or from glm, still assuming no censoring (△! ):
e.logitr <- glm(status.bin10 ∼ grade, family = binomial(link="identity"), data = BrCaR)
cbind(coef(e.logitr), confint(e.logitr))[2,]

Waiting for profiling to be done...
2.5 % 97.5 %

0.1386841 0.1004610 0.1760154
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e.logitr <- glm(status.bin10 ∼ grade, family = binomial(link="log"), data = BrCaR)
cbind(exp(coef(e.logitr)), exp(confint(e.logitr)))[2,]

Waiting for profiling to be done...
2.5 % 97.5 %

1.476689 1.314824 1.667895

To account for censoring, we would need to extract the risks obtained with the Kaplan-Meier esti-
mator:
eS.KM <- summary(e.KM,times=10)
RD <- diff(eS.KM$pstate[,2])
RD

[1] 0.1550246

the associated standard errors4, and deduce the confidence interval:
sigma_RD <- sqrt(sum(eS.KM$std.err[,2]^2))
c(estimate = RD,

lower = RD - qz * sigma_RD,
upper = RD + qz * sigma_RD)

estimate lower upper
0.1550246 0.1107735 0.1992758

4The confidence interval are computed using a transformation (log by default) but the standard error is the untrans-
formed one. This can be verified by re-fitting the survfit object with the argument conf.type="plain"
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7 Likelihood theory
Maximum likelihood: method using an iid5 sample to estimate model parameters

• define a statistical model (blinded to the data)
P [Y = 1] = π and P [Y = 0] = 1 − π

• express the likelihood (probability of observing the data given the model)
We followed n patients and D of them died. The likelihood of a death is π and of a survival is 1 − π.
So the likelihood associated to the sample is L(π) =

∏n
i=1 Li(π) = πD(1 − π)n−D.

• express the log-likelihood (probability of observing the data given the model)
ℓ(π) = D log(π) + (n − D) log(1 − π).

See left panel of figure 1 for an illustration.

• find the parameter value maximizing the likelihood (MLE), i.e. solve6 dℓ(π)
dπ

= 0
The first derivative of the likelihood (called score) is dℓ(π)

dπ = D
π − n−D

1−π . See the middle panel of figure 1 for an
illustration. It take value 0 at π̂ = D

n .

• quantify the variance of the MLE

– express the second derivative of the likelihood
d2ℓ(π)

dπ2 = − D
π2 − n−D

(1−π)2 = − D−2πD+π2n2

π2(1−π)2 = − nπ̂(1−2π+π2/π̂)
π2(1−π)2

– evaluate the opposite of its inverse at the MLE
σ̂2

π̂
= −

{(
d2ℓ(π)

dπ2

)∣∣∣
π=π̂

}−1
= π̂(1−π̂)

n

• For large enough sample size, the MLE is unbiased and normally distributed
π̂ ∼ N

(
π, σ2

p̂i

)

Wald test: use the asymptotic distribution of the estimate to test an hypothesis
H0 : π = 0.25, Wald statistic tW = π̂−0.25

σ
π̂

∼ N (0, 1), p-value pW = 2(1 − FN (|tW |))
where FN is the cdf7 of a standard normal distribution

Likelihood ratio test (LRT): use the log-likelihood under a specific restriction to test an hypothesis
H0 : π = 0.25, maximum log-likelihood ℓ(π̂), log-likelihood under H0 ℓ(0.25),

LRT statistic tLRT = −2 (ℓ(0.25) − ℓ(π̂)) ∼ χ2
1, p-value pW = 1 − Fχ2

1
(tLRT ))

where Fχ2
1

is the cdf of a chi-squared distribution with one degree of freedom.

5independent and identically distributed
6one should also check that the second derivative of the likelihood is negative
7cumulative distribution function
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Figure 1: Illustration of the log-likelihood function, its first derivative, and the variance of the estimate
for n = 100 and D = 33.
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