| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion     |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|----------------|
| 00<br>0000   | 0000<br>0000<br>00000 | 000000                   | 00000<br>00             | 000000<br>0000<br>00000 | 000<br>0000000 |

# Ph.D. course: Epidemiological methods in medical research Lecture 2: Measures of disease frequency and association

#### Brice Ozenne<sup>1,2</sup> - brice.ozenne@nru.dk

 $^1$  Section of Biostatistics, Department of Public Health, University of Copenhagen  $^2$  Neurobiology Research Unit, University Hospital of Copenhagen, Rigshospitalet.

12 January 2022

| Introduction | Measures of frequency | Risk - rate relationship |
|--------------|-----------------------|--------------------------|
| <b>•0</b>    | 0000                  | 0000000                  |
|              | 00000                 |                          |

# Epidemiology (very short!)

Description of disease frequency:

- outcome: generally binary or time to event (Y,T)
- measure: prevalence, odds, incidence rate, risk.

Find causes/remedies to the disease (E):

- compare exposed and non-exposed with respect to the measure.
- interpretation and consequences

In any case, target a meaningful parameter of interest

not just something 'easy' to estimate from your data

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association |
|--------------|-----------------------|--------------------------|-------------------------|
| 00<br>0000   | 0000                  | 000000                   | 00000                   |

# Quantifying uncertainty

Conclusion 000 0000000

# Need for statistical tools

Making exposed and non-exposed comparable

• e.g. adjustment for covariates in observational studies

#### Handling complications

 missing values (e.g. due to drop-out), competing events (e.g. death), dynamic treatment regimes (switch of treatment), ...

#### Working with finite samples:

• quantitying uncertainty

Prediction:

• guess what would happen for **a** new patient?

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion     |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|----------------|
| 00<br>0000   | 0000<br>0000<br>00000 | 000000                   | 00000<br>00             | 000000<br>0000<br>00000 | 000<br>0000000 |

# Cohort study - example 1

A group of n persons is followed over time



-  $T_i \in [0, +\infty[$  time to event for subject i

(in months, or years, or . . . )

N<sub>i</sub>(t) ∈ {0,1} event occurence by time t for subject i
 (e.g. death, death due to COVID, first COVID infection, ...)

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion     |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|----------------|
| 00<br>0000   | 0000<br>0000<br>00000 | 000000                   | 00000<br>00             | 000000<br>0000<br>00000 | 000<br>0000000 |

#### Note: counting process vs. health status

 $N_i(t)$  is also refered to as a counting process

- indicates whether an event has occured
- not whether the patient is still affected by the event,  $H_i(t)$

Illustration when the infection lasts 5 months:



| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|------------|
| 00           | 0000                  | 0000000                  | 00000                   | 000000                  | 000        |
| 0000         | 0000                  |                          | 00                      | 0000                    | 0000000    |
|              | 00000                 |                          |                         | 00000                   |            |

# Individual vs. aggregated data

Individual data: one line per subject

| patient | inclusion  | end        | time | status |
|---------|------------|------------|------|--------|
| id1     | 01-08-2020 | 01-10-2020 | 2.0  | dead   |
| id2     | 01-07-2020 | 01-03-2021 | 8.0  | alive  |
| id3     | 02-05-2020 | 01-11-2021 | 5.9  | dead   |
| id4     | 01-05-2020 | 01-01-2021 | 8.0  | alive  |

#### Aggregated data: one line per timepoint

| time | n.atRisk | dead | D | n-D | Y    |
|------|----------|------|---|-----|------|
| 0.0  | 4        | 0    | 0 | 4   | 0.0  |
| 2.0  | 4        | 1    | 1 | 3   | 8.0  |
| 5.9  | 3        | 1    | 2 | 2   | 19.7 |
| 8.0  | 2        | 0    | 2 | 2   | 23.9 |

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|------------|
| 00           | 0000                  | 0000000                  | 00000                   | 000000                  | 000        |
| 0000         | 0000                  |                          | 00                      | 0000                    | 0000000    |
|              | 00000                 |                          |                         | 00000                   |            |

# Individual vs. aggregated data

Individual data: one line per subject

| patient | inclusion  | end        | time | status |
|---------|------------|------------|------|--------|
| id1     | 01-08-2020 | 01-10-2020 | 2.0  | dead   |
| id2     | 01-07-2020 | 01-03-2021 | 8.0  | alive  |
| id3     | 02-05-2020 | 01-11-2021 | 5.9  | dead   |
| id4     | 01-05-2020 | 01-01-2021 | 8.0  | alive  |

#### Aggregated data: one line per timepoint

| time | n.atRisk | dead | D | n-D | Y    |
|------|----------|------|---|-----|------|
| 0.0  | 4        | 0    | 0 | 4   | 0.0  |
| 2.0  | 4        | 1    | 1 | 3   | 8.0  |
| 5.9  | 3        | 1    | 2 | 2   | 19.7 |
| 8.0  | 2        | 0    | 2 | 2   | 23.9 |

- 
$$D(t) = \sum_{i=1}^{n} N_i(t)$$
 events,  $n - D(t)$  event-free.  
-  $Y(t) = \sum_{i=1}^{n} T_i \wedge t$  total follow-up time.

Introduction 0000

Measures of association Quantifying uncertainty

# Example 2 (COVID)

From https://github.com/kjhealy/covdata:

"weekly national-level ECDC data on COVID-19"

|      | date       | country | population | cases | deaths |
|------|------------|---------|------------|-------|--------|
| 1:   | 2019-12-30 | Denmark | 5840045    | 10    | 0      |
| 2:   | 2020-01-06 | Denmark | 5840045    | 12    | 0      |
| 3:   | 2020-01-13 | Denmark | 5840045    | 8     | 0      |
| 4:   | 2020-01-20 | Denmark | 5840045    | 15    | 0      |
| 5:   | 2020-01-27 | Denmark | 5840045    | 13    | 0      |
|      |            |         |            |       |        |
| 130: | 2022-06-20 | Denmark | 5840045    | 8696  | 17     |
| 131: | 2022-06-27 | Denmark | 5840045    | 10720 | 33     |
| 132: | 2022-07-04 | Denmark | 5840045    | 12264 | 32     |
| 133: | 2022-07-11 | Denmark | 5840045    | 11965 | 41     |
| 134: | 2022-07-18 | Denmark | 5840045    | 10171 | 40     |

| Introduction Me | easures of frequency      | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion     |
|-----------------|---------------------------|--------------------------|-------------------------|-------------------------|----------------|
|                 | <b>000</b><br>000<br>0000 | 000000                   | 00000                   | 000000                  | 000<br>0000000 |

# Measures of frequency

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion     |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|----------------|
| 00<br>0000   | 0000<br>0000<br>00000 | 000000                   | 00000                   | 000000<br>0000<br>00000 | 000<br>0000000 |

### Prevalence

**Definition**: proportion of people with a disease (at a given time *t*)

$$\pi = \mathbb{P}\left[H = 1
ight]$$
 or  $\pi(t) = \mathbb{P}\left[H(t) = \pi \in [0, 1], \ \pi = \left\{egin{array}{c} 0 ext{ nobody has the disease} \ 1 ext{ everybody has the disease} \end{array}
ight.$ 

Estimation: "number of people with the disease" "number of people"

$$\hat{\pi}(t) = rac{1}{n}\sum_{i=1}^{n}H_i(t) = \overline{H}(t)$$
 when  $H_i$  is binary  $0/1$ 

where  $\overline{\bullet}$  denote the empirical average of  $\bullet$ .

1]

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion     |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|----------------|
| 00           | 0000                  | 000000                   | 00000                   | 000000<br>0000<br>00000 | 000<br>0000000 |

#### Prevalence - example 1



- $\widehat{\pi}(0) =$  at baseline
- $\hat{\pi}(3) =$  after 3 months
- $\hat{\pi}(8) =$  after 8 months

| Introduction | Measures of frequency        | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion     |
|--------------|------------------------------|--------------------------|-------------------------|-------------------------|----------------|
| 00<br>0000   | <b>0000</b><br>0000<br>00000 | 000000                   | 00000                   | 000000<br>0000<br>00000 | 000<br>0000000 |

#### Prevalence - example 1



Assumes that the infection lasts 5 months for everybody and no re-infection:

- $\widehat{\pi}(0) =$  at baseline
- $\hat{\pi}(3) =$  after 3 months
- $\hat{\pi}(8) =$  after 8 months

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion     |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|----------------|
| 00           | 0000                  | 000000                   | 00000                   | 000000<br>0000<br>00000 | 000<br>0000000 |

#### Prevalence - example 1



Assumes that the infection lasts 5 months for everybody and no re-infection:

- $\widehat{\pi}(0) = 0$  at baseline
- $\widehat{\pi}(3) = 1/4$  after 3 months
- $\widehat{\pi}(8) = 1/4$  after 8 months



## Prevalence - limitation

**Example 3**<sup>1</sup>: Prevalence of multiple sclerosis (MS):

- vitamin D deficient individuals (VD-):  $\hat{\pi}_{VD-} = 0.3\%$
- vitamin D sufficient individuals (VD+):  $\hat{\pi}_{VD+} = 0.1\%$

#### Interpretation:

- ?
- ?
- ?



## Prevalence - limitation

**Example 3**<sup>1</sup>: Prevalence of multiple sclerosis (MS):

- vitamin D deficient individuals (VD-):  $\hat{\pi}_{VD-} = 0.3\%$
- vitamin D sufficient individuals (VD+):  $\hat{\pi}_{VD+} = 0.1\%$

#### Interpretation:

- VD- causes MS
- MS causes VD-
- VD- and MS have a common cause

Prevalence data **alone** are insufficient for establishing a temporal relationship between outcome and exposure

<sup>&</sup>lt;sup>1</sup> example 2.2 from Kestenbaum (2019)

 Introduction
 Measures of frequency
 Risk - rate relationship
 Measures of association
 Quantifying uncertainty
 Conclusion

 00
 0000
 00000
 00000
 00000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

# Risk / cumulative incidence

Definition: proportion of people becoming sick within a period

 $r(\tau) = \mathbb{P}\left[T \leq \tau, N(\tau) = 1 | T > 0\right]$ 

- $r(\tau)$  is non-decreasing with au

Estimation: "number of new cases" "number of persons at risk"

$$\hat{r}(\tau) = rac{D(\tau)}{n} = rac{1}{n} \sum_{i=1}^{n} N_i(\tau) = \overline{N}$$
 when  $N_i$  is binary  $0/1$ 

11 / 51

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion     |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|----------------|
| 00<br>0000   | 0000<br>0000<br>0000  | 000000                   | 00000                   | 000000<br>0000<br>00000 | 000<br>0000000 |

#### Risk - example 1



- $\hat{r}(0) =$  at baseline
- $\hat{r}(3) =$  after 3 months
- $\hat{r}(8) =$  after 8 months

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion     |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|----------------|
| 00<br>0000   | 0000<br>0000<br>0000  | 000000                   | 00000                   | 000000<br>0000<br>00000 | 000<br>0000000 |

#### Risk - example 1



- $\hat{r}(0) = 0$  at baseline
- $\hat{r}(3) = 1/4$  after 3 months
- $\hat{r}(8) = 2/4$  after 8 months



#### Risk - example 2

- population: population size at the start of COVID
- atRisk: (approximate) number of COVID naive people
- cases number COVID cases detected during the week
- cu\_cases cumulative number of COVID cases

|     | date       | country  | population | atRisk  | cu_cases | cases |
|-----|------------|----------|------------|---------|----------|-------|
| 1:  | 2019-12-30 | Denmark  | 5840045    | 5840045 | 10       | 10    |
| 2:  | 2020-01-06 | Denmark  | 5840045    | 5840035 | 22       | 12    |
| 3:  | 2020-01-13 | Denmark  | 5840045    | 5840023 | 30       | 8     |
|     |            |          |            |         |          |       |
| 32: | 2022-07-04 | Denmark  | 5840045    | 2984835 | 2867474  | 12264 |
| 33: | 2022-07-11 | Denmark  | 5840045    | 2972571 | 2879439  | 11965 |
| 34: | 2022-07-18 | Denmark  | 5840045    | 2960606 | 2889610  | 10171 |
|     | 2022 01 10 | Dommarin | 0010010    | 2000000 | 2000010  |       |

Risk as cu\_cases/population or cases/atRisks 🏅



| ntroduction | Measures of frequency | Risk - rate relation |
|-------------|-----------------------|----------------------|
| 00          | 0000                  | 0000000              |
| 0000        | 0000                  |                      |
|             |                       |                      |

Measures of association Quantifying uncertainty

## Example 2 - illustration



There is no such thing as 'the risk'!

- dependents on the time horizon
- and on the initial time

14 / 51



## Incidence rate

Definition: risk of the event divided by exposure time

$$\lambda(0) = \frac{\mathbb{P}\left[T \leq \tau, N(\tau) = 1 | T > 0\right]}{\tau} \qquad \text{ init: time}^{-1}$$

- $\lambda(t) \in [0, +\infty[$  higher values ightarrow higher disease frequency
- implicitely assume a constant disease frequency over the exposure time

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion     |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|----------------|
| 00<br>0000   | 0000<br>0000<br>0000  | 0000000                  | 00000<br>00             | 000000<br>0000<br>00000 | 000<br>0000000 |

## Incidence rate

Definition: risk of the event divided by exposure time

$$\lambda(0) = \frac{\mathbb{P}\left[T \le \tau, N(\tau) = 1 | T > 0\right]}{\tau} \quad \text{(unit: time}^{-1}$$
$$\lambda(t) = \frac{\mathbb{P}\left[T \le t + \tau, N(\tau) = 1 | T > t\right]}{\tau}$$

•  $\lambda(t) \in [0, +\infty[$  higher values ightarrow higher disease frequency

• implicitely assume a constant disease frequency over the exposure time

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion     |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|----------------|
| 00<br>0000   | 0000<br>0000<br>0000  | 000000                   | 00000                   | 000000<br>0000<br>00000 | 000<br>0000000 |

## Incidence rate

Definition: risk of the event divided by exposure time

$$\lambda(0) = \frac{\mathbb{P}\left[T \le \tau, N(\tau) = 1 | T > 0\right]}{\tau} \quad \text{(unit: time}^{-1}$$
$$\lambda(t) = \frac{\mathbb{P}\left[T \le t + \tau, N(\tau) = 1 | T > t\right]}{\tau}$$

•  $\lambda(t) \in [0, +\infty[$  higher values ightarrow higher disease frequency

• implicitely assume a constant disease frequency over the exposure time

Estimation: "number of new cases" "number of person-time at risk"  $D(\pi) = \sum_{n=1}^{n} N_n(\pi)$ 

$$\widehat{\lambda}(\tau) = rac{D(\tau)}{Y(\tau)} = rac{\sum_{i=1}^{n} N_i(\tau)}{\sum_{i=1}^{n} T_i \wedge \tau}$$

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion     |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|----------------|
| 00<br>0000   | 0000<br>0000<br>0000  | 000000                   | 00000<br>00             | 000000<br>0000<br>00000 | 000<br>0000000 |



| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion     |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|----------------|
| 00<br>0000   | 0000<br>0000<br>0000  | 000000                   | 00000<br>00             | 000000<br>0000<br>00000 | 000<br>0000000 |



 $\approx$  per person-year 16 / 51

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion     |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|----------------|
| 00<br>0000   | 0000<br>0000<br>0000  | 000000                   | 00000<br>00             | 000000<br>0000<br>00000 | 000<br>0000000 |





ESTABLISHED IN 1812

DECEMBER 31, 2020

VOL. 383 NO. 27

Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine **STATISTICAL ANALYSIS** [...] Vaccine efficacy was estimated by 100×(1–IRR),

Vaccine efficacy was estimated by  $100 \times (1-1RR)$ , where IRR is the calculated ratio of confirmed cases of Covid-19 illness per 1000 person-years of follow-up in the active vaccine group to the corresponding illness rate in the placebo group.

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion     |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|----------------|
| 00<br>0000   | 0000                  | 000000                   | 00000                   | 000000                  | 000<br>0000000 |

3 datasets:

- daily number of cases (up to end of 2020)
- weekly number of cases (up to end of 2022)
- monthly number of cases based on the daily number

At risk time: unknown

• rough approximation: population size minus cumulative number of cases

| Introduction | Measures of frequency | Risk - rate relationship | Measu |
|--------------|-----------------------|--------------------------|-------|
| 00           | 0000                  | 0000000                  | 0000  |
| 0000         | 0000                  |                          | 00    |
|              | 00000                 |                          |       |

Measures of association

Quantifying uncertainty

Conclusion 000 0000000

## Example 2 - illustration



Same but with the same x- and y-scale



 Introduction
 Measures of frequency

 00
 0000

 0000
 0000

 0000
 0000

Risk - rate relationship

Measures of associati

Quantifying uncertainty

Conclusion 000 0000000

# Risk-rate relationship



| Introduction         Measures of frequency         Risk - ration           00         0000         00000         00000           0000         00000         00000         00000 | Onship Measures of association | Quantifying uncertainty<br>000000<br>0000<br>00000 | Conclus<br>000<br>00000 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------|-------------------------|
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------|-------------------------|

#### Cohort data: example 1 bis



#### Risk after 8 months:

•  $\hat{r}(8) =$ 

#### Incidence:

• 
$$\hat{\lambda}_1 =$$
  
•  $\hat{\lambda}_2 =$   
•  $\hat{\lambda}_3 =$   
•  $\hat{\lambda}_4 =$ 

 $t \in [0; 2]$   $t \in [2; 4]$   $t \in [4; 5.9]$  $t \in [5.9; 8]_{21} / 51$ 

| Introduction         Measures of trequency         Kisk - rate relationship         Measures of association         Quantifying uncertainty         Concl           00         0000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         000000         00000         00000         < | Quantifying uncertainty         Conclusion           000000         000           00000         000000           00000         0000000 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|

## Cohort data: example 1 bis



Risk after 8 months:

•  $\hat{r}(8) = (2+?)/4 = 0.5$  or 0.75

Incidence:

$$\begin{aligned} & \widehat{\lambda}_1 = 1/(2+2+2+2) = 1/8 & t \in [0;2] \\ & \widehat{\lambda}_2 = 0/(2+2+2) = 0 & t \in [2;4] \\ & \widehat{\lambda}_3 = 1/(1.9+1.9) = 1/3.8 & t \in [4;5.9] \\ & \widehat{\lambda}_4 = 0/2.1 = 0 & t \in [5.9;8]_{21} / 51 \end{aligned}$$



Risk (probability of getting the event)

22 / 51



Survival (probability of not getting the event)

$$S(3) = \mathbb{P}[N(1) = 0] \mathbb{P}[N(2) = 0|N(1) = 0] \mathbb{P}[N(3) = 0|N(2) = 0]$$
  
=  $(1 - \pi_1)(1 - \pi_2)(1 - \pi_3)$ 

Risk (probability of getting the event)

$$r(3) = 1 - S(3) = 1 - (1 - \pi_1)(1 - \pi_2)(1 - \pi_3)$$
  
=

22 / 51

 $1 - \pi_3$ 

event-free

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusio |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|-----------|
| 00           | 0000                  | 000000                   | 00000                   | 000000                  | 000       |
| 0000         | 0000                  |                          | 00                      | 0000                    | 000000    |
|              | 00000                 |                          |                         | 00000                   |           |

# Binary probability models

Assuming piecewise constant hazard:

•  $\pi_t = \Delta t \lambda_t$ : disease frequency equals rate times duration in each time interval



22 /

Survival (probability of not getting the event)

$$S(3) = \mathbb{P}[N(1) = 0] \mathbb{P}[N(2) = 0 | N(1) = 0] \mathbb{P}[N(3) = 0 | N(2) = 0]$$
  
=  $(1 - \pi_1)(1 - \pi_2)(1 - \pi_3)$ 

Risk (probability of getting the event)

$$egin{aligned} r(3) &= 1 - S(3) = 1 - (1 - \pi_1)(1 - \pi_2)(1 - \pi_3) \ &= 1 - (1 - \Delta t \lambda_1)(1 - \Delta t \lambda_2)(1 - \Delta t \lambda_3) \end{aligned}$$

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion     |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|----------------|
| 00<br>0000   | 0000<br>0000<br>00000 | 000000                   | 00000<br>00             | 000000<br>0000<br>00000 | 000<br>0000000 |

### Cohort data: example 1 bis



#### Risk after 8 months:

• 
$$\hat{r}(8) = (2+?)/4 = 0.5 \text{ or } 0.75$$
  
•  $\hat{r}(8) = 1 - (1 - \hat{\lambda}_1 \Delta t_1)(1 - \hat{\lambda}_2 \Delta t_2)(1 - \hat{\lambda}_3 \Delta t_3)(1 - \hat{\lambda}_4 \Delta t_4)$   
 $= 1 - (1 - 1/8 * 2) * 1 * (1 - 1/3.8 * 1.9) * 1 = 0.625$ 

Incidence:

$$\begin{aligned} & \widehat{\lambda}_1 = 1/8 & t \in [0; 2] \\ & \widehat{\lambda}_2 = 0 & t \in [2; 4] \\ & \widehat{\lambda}_3 = 1/7.8 & t \in [4; 5.9] \\ & \widehat{\lambda}_4 = 0 & t \in [5.9; 8]_{23} / 51 \end{aligned}$$
| ntroduction | Measures | of | frequency |  |
|-------------|----------|----|-----------|--|
| 00          | 0000     |    |           |  |
| 0000        | 0000     |    |           |  |
|             | 00000    |    |           |  |

Risk - rate relationship 0000000

Measures of association Quantifying uncertainty

# Application to example 2

Risk of infection/death within 771 days after start of COVID:

via the number of events:

sum(covidDK\$cases)/covidDK\$population[1] # infection

infection death 0.494792420 0.001129957

via the risk rate relationship

1-prod(1-covidDK\$cases/covidDK\$atRisk\*1) # infection

infection death 0.494792420 0.001129957

via an approximate risk rate relationship

1-exp(-sum(covidDK\$cases/covidDK\$atRisk\*1)) # infection

infection death 0.488263990 0.001129944

| Introduction Mea          | sures of frequency Risk - ra | ate relationship Measures                | of association Quantify | ing uncertainty Conclusion |
|---------------------------|------------------------------|------------------------------------------|-------------------------|----------------------------|
| 00<br>0000<br>0000<br>000 | 00000                        | •• • • • • • • • • • • • • • • • • • • • | 00000                   | 0000000                    |

#### Hazard, cumulative hazard, and survival

Special case: constant incidence rate

• 
$$S(t) = \exp\left(-\int_0^{\tau} \lambda(t) dt\right) = \exp\left(-\lambda \tau\right)$$

•  $\Lambda( au) = \int_0^ au \lambda(t) dt = \lambda au$  is called the cumulative hazard



| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion     |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|----------------|
| 00<br>0000   | 0000<br>0000<br>00000 | 000000                   | 00000                   | 000000<br>0000<br>00000 | 000<br>0000000 |

# Summary

• Prevalence: proportion of people with a disease at time t

$$\hat{\pi} = \frac{\text{``number of people with the disease''}}{\text{``number of people''}} \in [0,1]$$

• Incidence rate: frequency of disease occurrence over period  $\tau$   $\triangle$  unit: time<sup>-1</sup>, e.g. person-year

$$\widehat{\lambda}_{ au} = rac{" ext{number of new cases"}}{" ext{number of person-time at risk"}} \in [0, +\infty[$$

• Risk: probability of experiencing the disease before time  $\tau$ 

$$\widehat{r}(\tau) = rac{"number of new cases"}{"number of person at risk"} \approx 1 - \exp\left(-\int_0^{\tau} \widehat{\lambda}(t) dt\right)$$
  
26 / 51

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion     |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|----------------|
| 00<br>0000   | 0000<br>0000<br>00000 | 000000                   | •0000<br>00             | 000000<br>0000<br>00000 | 000<br>0000000 |

# Measures of association

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion     |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|----------------|
| 00<br>0000   | 0000<br>0000<br>00000 | 0000000                  | 00000                   | 000000                  | 000<br>0000000 |

| Infection<br>Country | No                  | Yes                 |
|----------------------|---------------------|---------------------|
| Denmark (DEN)        | a = 2960606         | b = 2889610         |
| Spain (SPA)          | <i>c</i> = 34224428 | <i>d</i> = 13231166 |

Risk comparison:  $\hat{r}_{DEN} = \frac{b}{a+b} = 49.48\%$  vs.  $\hat{r}_{SPA} = \frac{d}{c+d} = 27.91\%$ 

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion     |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|----------------|
| 00<br>0000   | 0000<br>0000<br>00000 | 0000000                  | 00000                   | 000000                  | 000<br>0000000 |

| Infection<br>Country | No                  | Yes                 |
|----------------------|---------------------|---------------------|
| Denmark (DEN)        | a = 2960606         | b = 2889610         |
| Spain (SPA)          | <i>c</i> = 34224428 | <i>d</i> = 13231166 |

Risk comparison:  $\hat{r}_{DEN} = \frac{b}{a+b} = 49.48\%$  vs.  $\hat{r}_{SPA} = \frac{d}{c+d} = 27.91\%$ 

• risk difference:  $RD(\tau) = r_{SPA}(\tau) - r_{DEN}(\tau) = -21.56\%$ 

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion     |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|----------------|
| 00<br>0000   | 0000<br>0000<br>00000 | 0000000                  | 00000                   | 000000                  | 000<br>0000000 |

| Infection<br>Country | No                  | Yes                 |
|----------------------|---------------------|---------------------|
| Denmark (DEN)        | a = 2960606         | <i>b</i> = 2889610  |
| Spain (SPA)          | <i>c</i> = 34224428 | <i>d</i> = 13231166 |

Risk comparison:  $\hat{r}_{DEN} = \frac{b}{a+b} = 49.48\%$  vs.  $\hat{r}_{SPA} = \frac{d}{c+d} = 27.91\%$ 

- risk difference:  $RD(\tau) = r_{SPA}(\tau) r_{DEN}(\tau) = -21.56\%$
- relative risk:  $RR(\tau) = \frac{r_{SPA}(\tau)}{r_{DEN}(\tau)} = 0.5642$

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion     |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|----------------|
| 00<br>0000   | 0000<br>0000<br>00000 | 0000000                  | 00000                   | 000000                  | 000<br>0000000 |

| Infection<br>Country | No                  | Yes                 |
|----------------------|---------------------|---------------------|
| Denmark (DEN)        | a = 2960606         | b = 2889610         |
| Spain (SPA)          | <i>c</i> = 34224428 | <i>d</i> = 13231166 |

Risk comparison:  $\hat{r}_{DEN} = \frac{b}{a+b} = 49.48\%$  vs.  $\hat{r}_{SPA} = \frac{d}{c+d} = 27.91\%$ 

- risk difference:  $RD(\tau) = r_{SPA}(\tau) r_{DEN}(\tau) = -21.56\%$
- relative risk:  $RR(\tau) = \frac{r_{SPA}(\tau)}{r_{DEN}(\tau)} = 0.5642$
- odds ratio:  $OR(\tau) = \left(\frac{r_{SPA}(\tau)}{1 r_{SPA}(\tau)}\right) / \left(\frac{r_{DEN}(\tau)}{1 r_{DEN}(\tau)}\right) = 0.3954$

#### 28 / 51

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion     |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|----------------|
| 00<br>0000   | 0000<br>0000<br>00000 | 0000000                  | 00000                   | 000000<br>0000<br>00000 | 000<br>0000000 |

## The 3 measures of associations

 $RD(\tau) = -21.56\%$   $RR(\tau) = 0.5642$   $OR(\tau) = 0.3954$ 

Interpretation: the 771 days risk of being tested COVID positive

- risk difference: is about 0.2 lower in Spain vs. Denmark
- relative risk: is about half in Spain compared vs. Denmark
- odds ratio: ?
- identical risks: RD RR OR
- higher risk in SPA: RD RR OR
- lower risk in SPA: RD RR OR

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion     |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|----------------|
| 00<br>0000   | 0000<br>0000<br>00000 | 0000000                  | 00000                   | 000000<br>0000<br>00000 | 000<br>0000000 |

### The 3 measures of associations

 $RD(\tau) = -21.56\%$   $RR(\tau) = 0.5642$   $OR(\tau) = 0.3954$ 

Interpretation: the 771 days risk of being tested COVID positive

- risk difference: is about 0.2 lower in Spain vs. Denmark
- relative risk: is about half in Spain compared vs. Denmark
- odds ratio: ?
- identical risks: RD = 0 RR = 1 OR = 1
- higher risk in SPA: RD > 0 RR > 1 OR > 1
- **lower risk** in SPA: *RD* < 0 *RR* < 1 *OR* < 1

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion     |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|----------------|
| 00<br>0000   | 0000<br>0000<br>00000 | 000000                   | 00000<br>00             | 000000<br>0000<br>00000 | 000<br>0000000 |

## Odds ratio

**odds**:  $\Omega(\tau) = \frac{\text{"risk of an event"}}{\text{"risk of no event"}} = \frac{r(\tau)}{1-r(\tau)}$ risk 0 0.01 0.10 0.25 0.3333333 0.5 0.75 0.99 1 odds 0 0.01 0.11 0.33 0.5000000 1.0 3.00 99.00 Inf

- $\Omega \in [0,\infty[$
- if risks are small  $\Omega(\tau) \approx r(\tau)$  ("rare disease assumption")

odds ratio: 
$$OR(\tau) = \left(\frac{r_{SPA}(\tau)}{1 - r_{SPA}(\tau)}\right) / \left(\frac{r_{DEN}(\tau)}{1 - r_{DEN}(\tau)}\right) = \frac{\Omega_{SPA}(\tau)}{\Omega_{DEN}(\tau)}$$

• 
$$RR(\tau) = \frac{OR(\tau)}{1 - r_{SPA} + r_{SPA}OR(\tau)}$$

- if risks are small  $OR(\tau) \approx RR(\tau)$  ("rare disease assumption")
- needed for case-control studies / logistic regression

#### 30 / 51

| Introduction | Measures of frequency | Risk - rate relationship | Ν |
|--------------|-----------------------|--------------------------|---|
| 00           | 0000                  | 0000000                  | С |
| 0000         | 0000                  |                          | C |
|              | 00000                 |                          |   |

Measures of association ○○○○● Quantifying uncertainty 000000 00000

Conclusion 000 0000000



| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion     |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|----------------|
| 00<br>0000   | 0000<br>0000<br>00000 | 000000                   | 00000<br>•0             | 000000<br>0000<br>00000 | 000<br>0000000 |

#### Test of association: chi-square test

| Infection<br>Country | No                  | Yes                 |
|----------------------|---------------------|---------------------|
| Denmark (DEN)        | a = 2960606         | <i>b</i> = 2889610  |
| Spain (SPA)          | <i>c</i> = 34224428 | <i>d</i> = 13231166 |

Testing the independence between the outcome and the group variable is based on

$$t_{\chi^2}=(a+b+c+d)rac{(ad-bc)}{(a+b)(c+d)(a+c)(b+d)}$$

which under independence follows<sup>2</sup> a  $\chi_1^2$ .

<sup>&</sup>lt;sup>2</sup> chi-square distribution with 1 degree of freedom

| Introduction | Measures | of | frequenc |
|--------------|----------|----|----------|
| 00           | 0000     |    |          |
| 0000         | 0000     |    |          |
|              | 00000    |    |          |

Risk - rate relationship

Measures of association ○○○○○ ○●

Quantifying uncertainty

Conclusion 000 0000000

# Personal opinion

I don't like so much this test.

Consider the following result:

•  $t_{\chi^2} = 4732$  and p-value < 0.0001

What can you conclude?

| Introduction | Measures | of | frequency |
|--------------|----------|----|-----------|
| 00           | 0000     |    |           |
| 0000         | 0000     |    |           |
|              | 00000    |    |           |

Risk - rate relationship 0000000

Measures of association

Quantifying uncertainty

Conclusion 000 0000000

# Personal opinion

I don't like so much this test.

Consider the following result:

•  $t_{\chi^2} = 4732$  and p-value < 0.0001

What can you conclude?

We lack a parameter of interest!

• better use RR or RD with associated confidence intervals

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty       | Conclusion     |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------------|----------------|
| 00<br>0000   | 0000<br>0000<br>00000 | 000000                   | 00000<br>00             | <b>00000</b><br>0000<br>00000 | 000<br>0000000 |

# Quantifying uncertainty



# Quiz 1 - p-value

Consider comparing two drugs regarding the occurence of a disease.

- A low p-value (e.g. below 0.05)
  - provides evidence again the null hypothesis, i.e. one drug is better than the other
  - cannot tell
- A high p-value (e.g. above 0.05)
  - provides evidence for the null hypothesis, i.e. the drugs are equivalent
  - cannot tell
- If two studies report different p-values (e.g. 0.01 vs 0.1)
  - the studies disagree
  - cannot tell

| ntroduction | Measures | of | freque |
|-------------|----------|----|--------|
| 00          | 0000     |    |        |
| 0000        | 0000     |    |        |
|             | 00000    |    |        |

# Quiz 1 - p-value (solution)

A low p-value (e.g. below 0.05)

- provides evidence again the null hypothesis,
  - i.e. one drug is better than the other
- cannot tell X

A high p-value (e.g. above 0.05)

- provides evidence for the null hypothesis, Y
  - i.e. the drugs are equivalent
  - cannot tell, one should look at the CIs

If two studies report different p-values (e.g. 0.01 vs 0.1)

- the studies disagree X
  - cannot tell, one should look at the CIs

| Introduction | Measures | of | fre |
|--------------|----------|----|-----|
| 00           | 0000     |    |     |
| 0000         | 0000     |    |     |
|              | 00000    |    |     |

Veasures of associati

Quantifying uncertainty

Conclusion 000 0000000

# Comparing confidence intervals



| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty        | Conclusion |
|--------------|-----------------------|--------------------------|-------------------------|--------------------------------|------------|
| 0000         | 0000<br>0000<br>00000 | 000000                   | 00000                   | <b>000000</b><br>0000<br>00000 | 000        |

# Quiz 2 - 95% confidence interval

For large enough n, the confidence interval [0.021; 0.336]:

- contains the true incidence rate with probability 95%.
- contains 95% of the sample data.
- contains incidence rates values compatible with the data

For large enough n, in 95% of the replication studies:

- the (new)  $Cl_{\hat{\lambda}_{\tau},95\%}$  will contain the true incidence rate.
- the (new) estimate will be in the current  $Cl_{\widehat{\lambda}_{-},95\%}$ .

When performing multiple comparisons:

- one should only adjust p-values
- one should adjust both p-values and confidence intervals

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|
| 00           | 0000                  | 0000000                  | 00000                   | 00000                   |
| 0000         | 0000                  |                          | 00                      | 0000                    |
|              | 00000                 |                          |                         | 00000                   |

# Quiz 2 - 95% confidence interval

For large enough n, the confidence interval [0.021; 0.336]:

- contains the true incidence rate with probability 95%. X
- X contains 95% of the sample data.
- contains incidence rates not statistically different with  $\lambda_{\tau}$ .

For large enough n, in 95% of the replication studies:

- $\checkmark$  the (new) Cl<sub> $\hat{\lambda}$  q5%</sub> will contain the true incidence rate.
- X the (new) estimate will be in the current  $Cl_{\hat{\lambda}_{-}, 05\%}$ .

When performing multiple comparisons:

- one should only adjust p-values X
  - one should adjust both p-values and confidence intervals

 Introduction
 Measures of frequency
 Risk - rate relationship
 Measures of association
 Quantifying uncertainty
 Conclusion

 00
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 000

# Confidence interval (based on asymptotic results)

95% confidence intervals enable to represent the uncertainty about our estimate, e.g.:

**risk**: 
$$\operatorname{Cl}_{\hat{r}(\tau),95\%} = \left[\hat{r}(\tau) - 1.96\sqrt{\frac{r(\tau)(1-r(\tau))}{n}}, \hat{r}(\tau) + 1.96\sqrt{\frac{r(\tau)(1-r(\tau))}{n}}\right]$$

Incidence rate: 
$$\mathsf{Cl}_{\widehat{\lambda}_{\tau},95\%} = \left[\widehat{\lambda}_{\tau} \exp\left(-\frac{1.96}{\sqrt{\widetilde{D}}}\right), \, \widehat{\lambda}_{\tau} \exp\left(\frac{1.96}{\sqrt{\widetilde{D}}}\right)\right]$$

40 / 51

 Introduction
 Measures of frequency
 Risk - rate relationship
 Measures of association
 Quantifying uncertainty
 Conclusion

 00
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 000

# Confidence interval (based on asymptotic results)

95% confidence intervals enable to represent the uncertainty about our estimate, e.g.:

**risk**: 
$$\operatorname{Cl}_{\widehat{r}(\tau),95\%} = \left[\widehat{r}(\tau) - 1.96\sqrt{\frac{r(\tau)(1-r(\tau))}{n}}, \widehat{r}(\tau) + 1.96\sqrt{\frac{r(\tau)(1-r(\tau))}{n}}\right]$$
  
(original scale:  $\operatorname{Cl}_{\widehat{\bullet},95\%} = \left[\widehat{\bullet} - 1.96\,\sigma_{\widehat{\bullet}}, \widehat{\bullet} + 1.96\,\sigma_{\widehat{\bullet}}\right]$ )

$$\begin{array}{l} \mbox{Incidence rate: } \mathsf{Cl}_{\widehat{\lambda}_{\tau},95\%} = \left[\widehat{\lambda}_{\tau}\exp\left(-\frac{1.96}{\sqrt{\widetilde{D}}}\right) \,,\,\widehat{\lambda}_{\tau}\exp\left(\frac{1.96}{\sqrt{\widetilde{D}}}\right)\right] \\ (\mbox{log-scale: } \mathsf{Cl}_{\widehat{\bullet},95\%} = \left[\widehat{\bullet}\exp\left(-1.96\,\sigma_{\log\widehat{\bullet}}\right) \,,\,\widehat{\bullet}\exp\left(1.96\,\log\sigma_{\widehat{\bullet}}\right)\right]) \end{array}$$

40 / 51

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|------------|
| 00           | 0000                  | 0000000                  | 00000                   | 000000                  | 000        |
| 0000         | 0000                  |                          | 00                      | 0000                    | 0000000    |
|              | 00000                 |                          |                         | 00000                   |            |

#### Confidence interval - example



| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion     |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|----------------|
| 00<br>0000   | 0000<br>0000<br>00000 | 000000                   | 00000<br>00             | 00000<br>0000<br>0000   | 000<br>0000000 |

# Uncertainty quantification - several approaches

#### Asymptotic results

- 🖌 🛛 fast, easy to describe
- not reliable in small samples

#### Exact tests

- very reliable
- 🗶 computer intensive, not always available

Resampling procedures (e.g. boostrap, permutation)

- widely applicable little "math" involved
- computer intensive

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion     |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|----------------|
| 00<br>0000   | 0000<br>0000<br>00000 | 000000                   | 00000                   | 000000<br>0000<br>00000 | 000<br>0000000 |

## Confidence intervals - summary

95% confidence intervals:

- represent the uncertainty about our estimate (reasonnable range of values)
- if it does not contain 0, there is evidence for an effect
- if it only contains only "small" values, there is evidence for the absence of a clinically relevant effect

When comparing two estimates

- compute the confidence interval of the difference or ratio
- **X** do not compare the confidence intervals (unless clear effect)

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion     |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|----------------|
| 00<br>0000   | 0000                  | 000000                   | 00000                   |                         | 000<br>0000000 |

# Likelihood approach - Why?

Systematic approach to:

- estimate parameters
- with their confidence intervals
- and associated significance tests

Especially useful in complex settings, e.g.:

- adjusting on covariates
- handling repeated measurements

Works well when we have:

- an iid<sup>3</sup> sample
- a generative model for the sample

<sup>&</sup>lt;sup>3</sup> independent and identically distributed

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion     |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|----------------|
| 00<br>0000   | 0000<br>0000<br>00000 | 000000                   | 00000<br>00             | 00000<br>0000<br>0000   | 000<br>0000000 |

# Likelihood approach - roadmap (1/3)

**1.** define a statistical model (blinded to the data)  $\mathbb{P}[Y = 1] = \pi$  and  $\mathbb{P}[Y = 0] = 1 - \pi$ 

2. express the likelihood (probability of observing the data given the model)  $\mathcal{L}(\pi) = \prod_{i=1}^{n} \mathbb{P}[Y = Y_i] = \pi^D (1 - \pi)^{n-D}$ 

**3.** express the log-likelihood  $\ell(\pi) = \log (\mathcal{L}(\pi)) = D \log(\pi) + (n - D) \log(1 - \pi)$ 

| ntroduction | Measures of frequency | Risk - rate relation |
|-------------|-----------------------|----------------------|
| 00          | 0000                  | 0000000              |
| 0000        | 0000                  |                      |
|             | 00000                 |                      |

Measures of associatio

Quantifying uncertainty

Conclusion 000 0000000

# Displaying the likelihood

Consider the case where n = 10 and D = 4

• likelihood: 
$$\mathcal{L}(\pi) = \pi^4 (1-\pi)^6$$

• log-likelihood 
$$\ell(\pi) = 4\log(\pi) + 6\log(1-\pi)$$



π

π

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion     |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|----------------|
| 00<br>0000   | 0000<br>0000<br>00000 | 0000000                  | 00000                   | 000000<br>0000<br>00000 | 000<br>0000000 |

# Likelihood approach - roadmap (2/3)

log-likelihood:  $\ell(\pi) = \log \left(\mathcal{L}(\pi)\right) = D \log(\pi) + (n - D) \log(1 - \pi)$ 

- **4.** find the parameter value maximizing the likelihood (MLE) i.e. solve<sup>4</sup>  $\frac{d\ell(\pi)}{d\pi} = 0$   $\frac{d\ell(\pi)}{d\pi} = \frac{D}{\pi} - \frac{n-D}{1-\pi}$  so  $\hat{\pi} = \frac{D}{n}$
- 5. quantify the variance of the MLE
  - express the second derivative of the likelihood  $\frac{d^2\ell(\pi)}{d\pi^2} = -\frac{D}{\pi^2} - \frac{n-D}{(1-\pi)^2} = -\frac{n\widehat{\pi}(1-2\pi+\pi^2/\widehat{\pi})}{\pi^2(1-\pi)^2}$ • evaluate the opposite of its inverse at the MLE  $\frac{d^2\ell(\pi)}{d\pi^2}\Big|_{\pi=\widehat{\pi}} = -\frac{n}{\pi(1-\pi)}$   $\widehat{\sigma}_{\widehat{\pi}}^2 = -\left\{\frac{d^2\ell(\pi)}{d\pi^2}\Big|_{\pi=\widehat{\pi}}\right\}^{-1} = \frac{\widehat{\pi}(1-\widehat{\pi})}{n}$

 $<sup>^4</sup>$  one should also check that the second derivative of the likelihood is negative 51

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|------------|
| 00<br>0000   | 0000<br>0000<br>00000 | 000000                   | 00000                   | 000000<br>0000<br>0000  | 000        |

# Likelihood approach - roadmap (3/3)

6. The MLE is (asymptotically) unbiased and normally distributed

$$\widehat{\pi} \sim \mathcal{N}\left(\pi, \sigma_{\widehat{\pi}}^2\right)$$

- confidence intervals:  $[\hat{\pi} 1.96\sigma_{\hat{\pi}}^2, \hat{\pi} + 1.96\sigma_{\hat{\pi}}^2]$
- Wald test  $t_W = \frac{\widehat{\pi 0.5}}{\sigma_{\widehat{\pi}}} \sim \mathcal{N}(0, 1)$  under the null hypothesis of a prevalence of 0.5

#### 48 / 51

| Introduction | Measures | of freque |
|--------------|----------|-----------|
| 00           | 0000     |           |
| 0000         | 0000     |           |
|              | 00000    |           |

Risk - rate relationship

Veasures of associatio

Quantifying uncertainty 000000 0000 Conclusion •00 •00

# Conclusion



| O         OO         OOO         OOO | 00000 0000<br>00000 00000 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|

# What we have seen today

| lction | Weasures | OŤ | frequer |
|--------|----------|----|---------|
|        | 0000     |    |         |
|        | 0000     |    |         |
|        |          |    |         |

Measures of association Quantifying uncertainty

Conclusion 000

# What we have seen today

- Introduction:
  - graphical representation of survival data
  - 3 data formats: individual, aggregated, 2 by 2 table
  - Measures of disease frequency:
  - definition and estimation of prevalence, odds, incidence rate, risk,
  - unit: per person.time for incidence rates
  - risk-rate relationship
  - estimation of the risk under right-censoring
- Measures of association
  - risk difference, relative risk, odds ratio
  - chi-squared test

Estimation and quantification of the uncertainty

- interpretation of p-values
- interpretation and calculation of confidence intervals (CIs)
- BONUS: a glimpse at the likelihood theory

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|------------|
| 00<br>0000   | 0000                  | 0000000                  | 00000                   | 000000                  | 000        |

# Take home messages

Statistical softwares can help you with estimation and quantification of the uncertainty  $\dots$  but not with defining the parameter(s) of interest:

- prevalence (static) vs. incidence/risk (dynamic)
- e.g. (registry study) average 5-year risk difference between treatment A and B in the danish population .

Time often plays a big role:

• effects may not be constant over time, especially treatment effects.

For the practical, document L2-summary.pdf contains

• formula (estimation, Cls) • useful **R** functions

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion    |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|---------------|
| 00<br>0000   | 0000<br>0000<br>00000 | 000000                   | 00000<br>00             | 000000<br>0000<br>00000 | 000<br>000000 |

# Reference I

Kestenbaum, B. (2019). Epidemiology and Biostatistics: An Introduction to Clinical Research.
| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|------------|
| 00           | 0000                  | 0000000                  | 00000                   | 000000                  | 000        |
| 0000         | 0000                  |                          | 00                      | 0000                    | 0000000    |
|              | 00000                 |                          |                         | 00000                   |            |

## Interlude: high school physics

### **Period** (T):

- time to complete one cycle
- unit: s

### Frequency (f):

• the number of cycles per second

• 
$$f = \frac{1}{T}$$

• unit:  $Hz = s^{-1}$  herts

Example: Heart rate at 60 vs. 120 beats per minute

- *T* = 1*s* vs 0.5*s*
- *f* = 1*Hz* vs 2*Hz*

53 / 51

second

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|------------|
| 00           | 0000                  | 000000                   | 00000                   | 000000                  | 000        |
| 0000         | 0000                  |                          | 00                      | 0000                    | 000000     |
|              | 00000                 |                          |                         | 00000                   |            |

# Risk - hazard relationship

$$\begin{split} \lambda(t) &= \lim_{dt \to 0} \frac{\mathbb{P}\left[t < T \leq t + dt | T > t\right]}{dt} \\ &= \lim_{dt \to 0} \frac{\frac{\mathbb{P}\left[t < T \leq t + dt\right]}{dt}}{\mathbb{P}\left[T > t\right]} = \lim_{dt \to 0} \frac{\frac{\mathbb{P}\left[T \leq t + dt\right] - \mathbb{P}\left[T \leq t\right]}{dt}}{\mathbb{P}\left[T > t\right]} \\ &= \lim_{dt \to 0} \frac{\frac{(1 - S(t + dt)) - (1 - S(t))}{dt}}{S(t)} = \frac{-\frac{\partial S(t)}{\partial t}}{S(t)} \\ \lambda(t) &= -\frac{\partial \log S(t)}{\partial t} \\ \lambda(\tau) &= \int_{0}^{\tau} \lambda(t) dt = -\log S(\tau) \\ S(\tau) &= \exp(-\Lambda(\tau)) \\ r(\tau) &= 1 - \exp(-\Lambda(\tau)) \end{split}$$

54 / 51



- Prevalence: static
- Incidence rate/rate: dynamic
- risk: dynamic



- Prevalence: static
- Incidence rate/rate: dynamic
- risk: dynamic

= incidence x duration

| Th | e epidemiol | ogist's batht | ub         |  |
|----|-------------|---------------|------------|--|
|    | V           | olume (%): r  | prevalence |  |



- Prevalence: static
- Incidence rate/rate: dynamic
- risk: dynamic

= incidence x duration

| oduction | Measures of frequen | cy R |
|----------|---------------------|------|
|          | 0000                | C    |
| 00       | 0000                |      |
|          | 00000               |      |

Risk - rate relationship 0000000 Measures of associati

Quantifying uncertainty

Conclusion

# Gambling at 1:3



56 / 51

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusion      |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|-----------------|
| 00<br>0000   | 0000                  | 0000000                  | 00000                   | 000000                  | 000<br>00000000 |

### Interpretation of the CI - analogy

A machine generates boxes with 95% probability to contain a gift.



- 95% of the boxes I receive contain gifts.
- a specific box contains or not gifts

| Introduction | Measures of frequency | Risk - rate relationship | Measures of association | Quantifying uncertainty | Conclusio |
|--------------|-----------------------|--------------------------|-------------------------|-------------------------|-----------|
| 00           | 0000                  | 0000000                  | 00000                   | 000000                  | 000       |
| 0000         | 0000                  |                          | 00                      | 0000                    | 000000    |
|              | 00000                 |                          |                         | 00000                   |           |

## Interpretation of the CI

Similar except that we are "blind"

- no able to precisely check the content of the box
- $\checkmark \quad \frac{\text{the calculation of the CI}}{\text{contains the (true) value.}} \text{ ensures that 95\% of the time, it}$ 
  - CI = [0.021; 0.336]
  - $\checkmark$  the (true) death rate may or may not be between 0.021 and 0.336
  - the data at hand is concordant with a (true) death rate between 0.021 and 0.336