Ph.D. course: Epidemiological methods in medical research Lecture 2: Measures of disease frequency and association

$$
\text { Brice Ozenne }{ }^{1,2} \text { - brice.ozenne@nru.dk }
$$

${ }^{1}$ Section of Biostatistics, Department of Public Health, University of Copenhagen
${ }^{2}$ Neurobiology Research Unit, University Hospital of Copenhagen, Rigshospitalet.

12 January 2022

Epidemiology (very short!)

Description of disease frequency:

- outcome: generally binary or time to event (Y, T)
- measure: prevalence, odds, incidence rate, risk.

Find causes/remedies to the disease (E) :

- compare exposed and non-exposed with respect to the measure.
- interpretation and consequences

In any case, target a meaningful parameter of interest

- not just something 'easy' to estimate from your data

Need for statistical tools

Making exposed and non-exposed comparable

- e.g. adjustment for covariates in observational studies

Handling complications

- missing values (e.g. due to drop-out), competing events (e.g. death), dynamic treatment regimes (switch of treatment), ...

Working with finite samples:

- quantitying uncertainty

Prediction:

- guess what would happen for a new patient?

Cohort study - example 1

A group of n persons is followed over time

- $T_{i} \in[0,+\infty[$ time to event for subject i
(in months, or years, or ...)
- $N_{i}(t) \in\{0,1\}$ event occurence by time t for subject i (e.g. death, death due to COVID, first COVID infection, ...)

Note: counting process vs. health status

$N_{i}(t)$ is also refered to as a counting process

- indicates whether an event has occured
- not whether the patient is still affected by the event, $H_{i}(t)$

Illustration when the infection lasts 5 months:

Individual vs. aggregated data

Individual data: one line per subject

patient	inclusion	end	time	status
id1	$01-08-2020$	$01-10-2020$	2.0	dead
id2	$01-07-2020$	$01-03-2021$	8.0	alive
id3	$02-05-2020$	$01-11-2021$	5.9	dead
id4	$01-05-2020$	$01-01-2021$	8.0	alive

Aggregated data: one line per timepoint

time	n.atRisk	dead	D	n-D	Y
0.0	4	0	0	4	0.0
2.0	4	1	1	3	8.0
5.9	3	1	2	2	19.7
8.0	2	0	2	2	23.9

Individual vs. aggregated data

Individual data: one line per subject

patient	inclusion	end	time	status
id1	$01-08-2020$	$01-10-2020$	2.0	dead
id2	$01-07-2020$	$01-03-2021$	8.0	alive
id3	$02-05-2020$	$01-11-2021$	5.9	dead
id4	$01-05-2020$	$01-01-2021$	8.0	alive

Aggregated data: one line per timepoint

time	n.atRisk	dead	D	n-D	Y
0.0	4	0	0	4	0.0
2.0	4	1	1	3	8.0
5.9	3	1	2	2	19.7
8.0	2	0	2	2	23.9

- $D(t)=\sum_{i=1}^{n} N_{i}(t)$ events, $n-D(t)$ event-free.
- $Y(t)=\sum_{i=1}^{n} T_{i} \wedge t$ total follow-up time.

Example 2 (COVID)

From https://github.com/kjhealy/covdata:

- "weekly national-level ECDC data on COVID-19"
date country population cases deaths 1: 2019-12-30 Denmark 584004510 0 2: 2020-01-06 Denmark 5840045120 3: 2020-01-13 Denmark 584004580
4: 2020-01-20 Denmark 584004515 0
5: 2020-01-27 Denmark 5840045130

| 130: 2022-06-20 Denmark | 5840045 | 8696 | 17 |
| :--- | :--- | :--- | :--- | :--- |
| 131: 2022-06-27 Denmark | 5840045 | 10720 | 33 |
| 132: 2022-07-04 Denmark | 5840045 | 12264 | 32 |
| 133: 2022-07-11 Denmark | 5840045 | 11965 | 41 |
| 134: 2022-07-18 Denmark | 5840045 | 10171 | 40 |

Measures of frequency

Prevalence

Definition: proportion of people with a disease (at a given time t)

$$
\pi=\mathbb{P}[H=1] \quad \text { or } \quad \pi(t)=\mathbb{P}[H(t)=1]
$$

- $\pi \in[0,1], \pi=\left\{\begin{array}{l}0 \text { nobody has the disease } \\ 1 \text { everybody has the disease }\end{array}\right.$

Estimation: $\frac{\text { "number of people with the disease" }}{\text { "number of people" }}$

$$
\hat{\pi}(t)=\frac{1}{n} \sum_{i=1}^{n} H_{i}(t)=\bar{H}(t) \text { when } H_{i} \text { is binary } 0 / 1
$$

where \bullet denote the empirical average of \bullet.

Measures of frequency 0000 0000 00000

Risk - rate relationship

Prevalence - example 1

- $\widehat{\pi}(0)=$ at baseline
- $\widehat{\pi}(3)=\quad$ after 3 months
- $\widehat{\pi}(8)=$ after 8 months

Measures of frequency 000 0000 00000

Risk - rate relationship Measures of association

Prevalence - example 1

Assumes that the infection lasts 5 months for everybody and no re-infection:

- $\widehat{\pi}(0)=$ at baseline
- $\widehat{\pi}(3)=$ after 3 months
- $\widehat{\pi}(8)=$ after 8 months

Measures of frequency 000 0000 00000

Risk - rate relationship Measures of association

Prevalence - example 1

Assumes that the infection lasts 5 months for everybody and no re-infection:

- $\widehat{\pi}(0)=0$ at baseline
- $\widehat{\pi}(3)=1 / 4$ after 3 months
- $\widehat{\pi}(8)=1 / 4$ after 8 months

Prevalence - limitation

Example 3^{1} : Prevalence of multiple sclerosis (MS):

- vitamin D deficient individuals (VD-): $\hat{\pi}_{V D-}=0.3 \%$
- vitamin D sufficient individuals (VD+): $\hat{\pi}_{V D+}=0.1 \%$

Interpretation:

- ?
- ?
-?

Prevalence - limitation

Example 3^{1} : Prevalence of multiple sclerosis (MS):

- vitamin D deficient individuals (VD-): $\hat{\pi}_{V D-}=0.3 \%$
- vitamin D sufficient individuals (VD+): $\hat{\pi}_{V D+}=0.1 \%$

Interpretation:

- VD- causes MS
- MS causes VD-
- VD- and MS have a common cause
. Prevalence data alone are insufficient for establishing a temporal relationship between outcome and exposure

Risk / cumulative incidence

Definition: proportion of people becoming sick within a period

$$
r(\tau)=\mathbb{P}[T \leq \tau, N(\tau)=1 \mid T>0]
$$

- $r(0)=0$
- $r \in[0,1], r=\left\{\begin{array}{l}0 \text { nobody will get the disease } \\ 1 \text { everybody will get the disease }\end{array}\right.$
- $r(\tau)$ is non-decreasing with τ

Estimation: $\frac{\text { "number of new cases" }}{\text { number of persons at risk" }}$

$$
\hat{r}(\tau)=\frac{D(\tau)}{n}=\frac{1}{n} \sum_{i=1}^{n} N_{i}(\tau)=\bar{N} \text { when } N_{i} \text { is binary } 0 / 1
$$

Risk - example 1

- $\widehat{r}(0)=$ at baseline
- $\widehat{r}(3)=\quad$ after 3 months
- $\widehat{r}(8)=$ after 8 months

Risk - example 1

- $\widehat{r}(0)=0$ at baseline
- $\widehat{r}(3)=1 / 4$ after 3 months
- $\widehat{r}(8)=2 / 4$ after 8 months

Risk - example 2

- population: population size at the start of COVID
- atRisk: (approximate) number of COVID naive people
- cases number COVID cases detected during the week
- cu_cases cumulative number of COVID cases

date country	population	atRisk	cu_cases	cases	
1: 2019-12-30	Denmark	5840045	5840045	10	10
2: 2020-01-06 Denmark	5840045	5840035	22	12	
3: 2020-01-13 Denmark	5840045	5840023	30	8	

32: 2022-07-04 Denmark	5840045	2984835	2867474	12264	
33: 2022-07-11 Denmark	5840045	2972571	2879439	11965	
34: 2022-07-18 Denmark	5840045	2960606	2889610	10171	

Example 2 - illustration

Risk of COVID infection from 2019-12-30 in Denmark

1 week risk of COVID infection in Denmark

There is no such thing as 'the risk'!

- dependents on the time horizon
- and on the initial time

Incidence rate

Definition: risk of the event divided by exposure time

$$
\lambda(0)=\frac{\mathbb{P}[T \leq \tau, N(\tau)=1 \mid T>0]}{\tau} \quad \text { @ unit: time }{ }^{-1}
$$

- $\lambda(t) \in[0,+\infty[$ higher values \rightarrow higher disease frequency
- implicitely assume a constant disease frequency over the exposure time

Incidence rate

Definition: risk of the event divided by exposure time

$$
\begin{aligned}
& \lambda(0)=\frac{\mathbb{P}[T \leq \tau, N(\tau)=1 \mid T>0]}{\tau} \quad \text { @ unit: time }{ }^{-1} \\
& \lambda(t)=\frac{\mathbb{P}[T \leq t+\tau, N(\tau)=1 \mid T>t]}{\tau}
\end{aligned}
$$

- $\lambda(t) \in[0,+\infty[$ higher values \rightarrow higher disease frequency
- implicitely assume a constant disease frequency over the exposure time

Incidence rate

Definition: risk of the event divided by exposure time

$$
\begin{aligned}
& \lambda(0)=\frac{\mathbb{P}[T \leq \tau, N(\tau)=1 \mid T>0]}{\tau} \quad \text { @ unit: time }{ }^{-1} \\
& \lambda(t)=\frac{\mathbb{P}[T \leq t+\tau, N(\tau)=1 \mid T>t]}{\tau}
\end{aligned}
$$

- $\lambda(t) \in[0,+\infty[$ higher values \rightarrow higher disease frequency
- implicitely assume a constant disease frequency over the exposure time

Estimation: $\frac{\text { "number of new cases" }}{\text { "number of person-time at risk" }}$

$$
\widehat{\lambda}(\tau)=\frac{D(\tau)}{Y(\tau)}=\frac{\sum_{i=1}^{n} N_{i}(\tau)}{\sum_{i=1}^{n} T_{i} \wedge \tau}
$$

Incidence rate - example

$$
\mathrm{id}=1 \longrightarrow \square
$$

- $\widetilde{T}_{1}=2$ months, $\widetilde{Y}_{1}=1$
- $\tilde{T}_{2}=8$ months, $\tilde{Y}_{2}=0$
$\widehat{\lambda}_{\tau}=$

- $\widetilde{T}_{3}=5.9$ months, $\widetilde{Y}_{3}=1$
- $\widetilde{T}_{4}=8$ months, $\widetilde{Y}_{4}=0$
$\approx \quad$ per 1000 person-month

Incidence rate - example

- $\widetilde{T}_{1}=2$ months, $\widetilde{Y}_{1}=1$
- $\widetilde{T}_{2}=8$ months, $\widetilde{Y}_{2}=0$
$\hat{\lambda}_{\tau}=\frac{1+0+1+0}{2+8+5.9+8}=\frac{2 \text { new cases }}{23.8 \text { person-month }} \approx 0.084$ per person-month
≈ 84 per 1000 person-month

Incidence rate - example

- $\widetilde{T}_{1}=2$ months, $\widetilde{Y}_{1}=1$
- $\widetilde{T}_{2}=8$ months, $\widetilde{Y}_{2}=0$

- $\widetilde{T}_{3}=5.9$ months, $\widetilde{Y}_{3}=1$
- $\widetilde{T}_{4}=8$ months, $\widetilde{Y}_{4}=0$

$$
\hat{\lambda}_{\tau}=\frac{1+0+1+0}{2+8+5.9+8}=\frac{2 \text { new cases }}{23.8 \text { person-month }} \approx 0.084 \text { per person-month }
$$

≈ 84 per 1000 person-month
2 new cases 23.8/12 person-year

Incidence rate - in the litterature

Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine [...]

STATISTICAL ANALYSIS

[...]
Vaccine efficacy was estimated by $100 \times(1-I R R)$, where IRR is the calculated ratio of confirmed cases of Covid-19 illness per 1000 person-years of follow-up in the active vaccine group to the corresponding illness rate in the placebo group.

Incidence rate - example 2

3 datasets:

- daily number of cases (up to end of 2020)
- weekly number of cases (up to end of 2022)
- monthly number of cases based on the daily number

At risk time: unknown

- rough approximation: population size minus cumulative number of cases

Example 2 - illustration

Same but with the same x - and y-scale
Incidence rate of COVID infection in Denmark

Risk-rate relationship

Cohort data: example 1 bis

Risk after 8 months:

- $\widehat{r}(8)=$

Incidence:

- $\widehat{\lambda}_{1}=$
- $\hat{\lambda}_{2}=$
- $\hat{\lambda}_{3}=$
- $\widehat{\lambda}_{4}=$

$$
\begin{aligned}
& t \in[0 ; 2] \\
& t \in[2 ; 4] \\
& t \in[4 ; 5.9] \\
& t \in[5.9 ; 8]_{21} / 51
\end{aligned}
$$

Cohort data: example 1 bis

Risk after 8 months:

- $\widehat{r}(8)=(2+?) / 4=0.5$ or 0.75

Incidence:

- $\hat{\lambda}_{1}=1 /(2+2+2+2)=1 / 8$
- $\hat{\lambda}_{2}=0 /(2+2+2)=0$
- $\hat{\lambda}_{3}=1 /(1.9+1.9)=1 / 3.8$

$$
\text { - } \widehat{\lambda}_{4}=0 / 2.1=0
$$

$$
\begin{aligned}
& t \in[0 ; 2] \\
& t \in[2 ; 4] \\
& t \in[4 ; 5.9] \\
& t \in[5.9 ; 8]_{21} / 51
\end{aligned}
$$

Binary probability models

Assuming piecewise constant hazard:

Survival (probability of not getting the event)
$S(3)=$
$=$
Risk (probability of getting the event)

$$
r(3)=
$$

$$
=
$$

Binary probability models

Assuming piecewise constant hazard:

Survival (probability of not getting the event)

$$
\begin{aligned}
S(3) & =\mathbb{P}[N(1)=0] \mathbb{P}[N(2)=0 \mid N(1)=0] \mathbb{P}[N(3)=0 \mid N(2)=0] \\
& =\left(1-\pi_{1}\right)\left(1-\pi_{2}\right)\left(1-\pi_{3}\right)
\end{aligned}
$$

Risk (probability of getting the event)

$$
r(3)=1-S(3)=1-\left(1-\pi_{1}\right)\left(1-\pi_{2}\right)\left(1-\pi_{3}\right)
$$

Binary probability models

Assuming piecewise constant hazard:

- $\pi_{t}=\Delta t \lambda_{t}$: disease frequency equals rate times duration in each time interval

$|\stackrel{\Delta t}{ }| \Delta t \mid \Delta t \xrightarrow{\mid}$ Time

Survival (probability of not getting the event)

$$
\begin{aligned}
S(3) & =\mathbb{P}[N(1)=0] \mathbb{P}[N(2)=0 \mid N(1)=0] \mathbb{P}[N(3)=0 \mid N(2)=0] \\
& =\left(1-\pi_{1}\right)\left(1-\pi_{2}\right)\left(1-\pi_{3}\right)
\end{aligned}
$$

Risk (probability of getting the event)

$$
\begin{aligned}
r(3) & =1-S(3)=1-\left(1-\pi_{1}\right)\left(1-\pi_{2}\right)\left(1-\pi_{3}\right) \\
& =1-\left(1-\Delta t \lambda_{1}\right)\left(1-\Delta t \lambda_{2}\right)\left(1-\Delta t \lambda_{3}\right)
\end{aligned}
$$

Cohort data: example 1 bis

Risk after 8 months:

- $\hat{r}(8)=(2+?) / 4=0.5$ or 0.75
- $\widehat{r}(8)=1-\left(1-\widehat{\lambda}_{1} \Delta t_{1}\right)\left(1-\widehat{\lambda}_{2} \Delta t_{2}\right)\left(1-\widehat{\lambda}_{3} \Delta t_{3}\right)\left(1-\widehat{\lambda}_{4} \Delta t_{4}\right)$

$$
=1-(1-1 / 8 * 2) * 1 *(1-1 / 3.8 * 1.9) * 1=0.625
$$

Incidence:

- $\widehat{\lambda}_{1}=1 / 8$

$$
\begin{aligned}
& t \in[0 ; 2] \\
& t \in[2 ; 4] \\
& t \in[4 ; 5.9] \\
& t \in[5.9 ; 8]_{23} / 51
\end{aligned}
$$

- $\hat{\lambda}_{2}=0$
- $\hat{\lambda}_{3}=1 / 7.8$
- $\widehat{\lambda}_{4}=0$

Application to example 2

Risk of infection/death within 771 days after start of COVID:

- via the number of events:
sum(covidDK\$cases)/covidDK\$population[1] \# infection
infection death
0.4947924200 .001129957
- via the risk rate relationship

1-prod(1-covidDK\$cases/covidDK\$atRisk*1) \# infection

infection	death
0.494792420	0.001129957

- via an approximate risk rate relationship

1-exp(-sum(covidDK\$cases/covidDK\$atRisk*1)) \# infection

infection	death
0.488263990	0.001129944

Hazard, cumulative hazard, and survival

Special case: constant incidence rate

- $S(t)=\exp \left(-\int_{0}^{\tau} \lambda(t) d t\right)=\exp (-\lambda \tau)$
- $\Lambda(\tau)=\int_{0}^{\tau} \lambda(t) d t=\lambda \tau$ is called the cumulative hazard

Summary

- Prevalence: proportion of people with a disease at time t

$$
\hat{\pi}=\frac{\text { "number of people with the disease" }}{\text { "number of people" }} \in[0,1]
$$

- Incidence rate: frequency of disease occurrence over period τ 4 unit: time ${ }^{-1}$, e.g. person-year

$$
\widehat{\lambda}_{\tau}=\frac{\text { "number of new cases" }}{\text { "number of person-time at risk" }} \in[0,+\infty[
$$

- Risk: probability of experiencing the disease before time τ

$$
\widehat{r}(\tau)=\frac{\text { "number of new cases" }}{\text { "number of person at risk" }} \approx 1-\exp \left(-\int_{0}^{\tau} \widehat{\lambda}(t) d t\right)
$$

Measures of association

Example 2 at a specific timepoint

Infection	No	Yes
Country	$a=2960606$	$b=2889610$
Denmark (DEN)	$c=34224428$	$d=13231166$

Risk comparison: $\hat{r}_{D E N}=\frac{b}{a+b}=49.48 \%$ vs. $\hat{r}_{S P A}=\frac{d}{c+d}=27.91 \%$

Example 2 at a specific timepoint

Infection	No	Yes
Country	$a=2960606$	$b=2889610$
Denmark (DEN)	$c=34224428$	$d=13231166$

Risk comparison: $\hat{r}_{D E N}=\frac{b}{a+b}=49.48 \%$ vs. $\hat{r}_{S P A}=\frac{d}{c+d}=27.91 \%$

- risk difference: $R D(\tau)=r_{S P A}(\tau)-r_{D E N}(\tau)=-21.56 \%$

Example 2 at a specific timepoint

Infection	No	Yes
Country	$a=2960606$	$b=2889610$
Denmark (DEN)	$c=34224428$	$d=13231166$

Risk comparison: $\hat{r}_{D E N}=\frac{b}{a+b}=49.48 \%$ vs. $\hat{r}_{S P A}=\frac{d}{c+d}=27.91 \%$

- risk difference: $R D(\tau)=r_{S P A}(\tau)-r_{D E N}(\tau)=-21.56 \%$
- relative risk: $R R(\tau)=\frac{r_{\text {SPA }}(\tau)}{r_{D E N}(\tau)}=0.5642$

Example 2 at a specific timepoint

Infection	No	Yes
Country	$a=2960606$	$b=2889610$
Denmark (DEN)	$c=34224428$	$d=13231166$

Risk comparison: $\hat{r}_{D E N}=\frac{b}{a+b}=49.48 \%$ vs. $\hat{r}_{S P A}=\frac{d}{c+d}=27.91 \%$

- risk difference: $R D(\tau)=r_{S P A}(\tau)-r_{D E N}(\tau)=-21.56 \%$
- relative risk: $R R(\tau)=\frac{r_{\text {SPA }}(\tau)}{r_{D E N}(\tau)}=0.5642$
- odds ratio: $O R(\tau)=\left(\frac{r_{S P A}(\tau)}{1-r_{S P A}(\tau)}\right) /\left(\frac{r_{D E N}(\tau)}{1-r_{D E N}(\tau)}\right)=0.3954$

The 3 measures of associations

$R D(\tau)=-21.56 \% \quad R R(\tau)=0.5642$
$O R(\tau)=0.3954$
Interpretation: the 771 days risk of being tested COVID positive

- risk difference: is about 0.2 lower in Spain vs. Denmark
- relative risk: is about half in Spain compared vs. Denmark
- odds ratio: ?
- identical risks:
$R D \quad R R \quad O R$
- higher risk in SPA: RD $\quad R R \quad O R$
- lower risk in SPA: RD $\quad R R \quad O R$

The 3 measures of associations

$R D(\tau)=-21.56 \% \quad R R(\tau)=0.5642 \quad O R(\tau)=0.3954$
Interpretation: the 771 days risk of being tested COVID positive

- risk difference: is about 0.2 lower in Spain vs. Denmark
- relative risk: is about half in Spain compared vs. Denmark
- odds ratio: ?
- identical risks: $\quad R D=0 R R=1 O R=1$
- higher risk in SPA: $R D>0 R R>1 O R>1$
- lower risk in SPA: $R D<0 R R<1 O R<1$

Odds ratio

odds: $\Omega(\tau)=\frac{\text { "risk of an event" }}{\text { "risk of no event" }}=\frac{r(\tau)}{1-r(\tau)}$
risk $00.010 .100 .250 .33333330 .50 .75 \quad 0.991$
odds $00.010 .110 .330 .50000001 .03 .0099 .00 \operatorname{Inf}$

- $\Omega \in[0, \infty[$
- if risks are small $\Omega(\tau) \approx r(\tau)$ ("rare disease assumption")
odds ratio: $O R(\tau)=\left(\frac{r_{S P A}(\tau)}{1-r_{S P A}(\tau)}\right) /\left(\frac{r_{D E N}(\tau)}{1-r_{D E N}(\tau)}\right)=\frac{\Omega_{S P A}(\tau)}{\Omega_{D E N}(\tau)}$
- $R R(\tau)=\frac{O R(\tau)}{1-r_{S P A}+r_{S P A} O R(\tau)}$
- if risks are small $O R(\tau) \approx R R(\tau)$ ("rare disease assumption")
- needed for case-control studies / logistic regression

Odds ratio vs. risk ratio

Test of association: chi-square test

Infection	No	Yes
Country	$a=2960606$	$b=2889610$
Denmark (DEN)	$c=34224428$	$d=13231166$

Testing the independence between the outcome and the group variable is based on

$$
t_{\chi^{2}}=(a+b+c+d) \frac{(a d-b c)}{(a+b)(c+d)(a+c)(b+d)}
$$

which under independence follows ${ }^{2}$ a χ_{1}^{2}.

I don't like so much this test.
Consider the following result:

- $t_{\chi^{2}}=4732$ and p -value <0.0001

What can you conclude?

Personal opinion

I don't like so much this test.
Consider the following result:

- $t_{\chi^{2}}=4732$ and p-value <0.0001

What can you conclude?
We lack a parameter of interest!

- better use RR or RD with associated confidence intervals

Quantifying uncertainty

Quiz 1 - p-value

Consider comparing two drugs regarding the occurence of a disease.
A low p-value (e.g. below 0.05)

- provides evidence again the null hypothesis,
i.e. one drug is better than the other
- cannot tell

A high p-value (e.g. above 0.05)

- provides evidence for the null hypothesis,
i.e. the drugs are equivalent
- cannot tell

If two studies report different p -values (e.g. 0.01 vs 0.1)

- the studies disagree
- cannot tell

Quiz 1 - p-value (solution)

A low p-value (e.g. below 0.05) provides evidence again the null hypothesis,
i.e. one drug is better than the other

X cannot tell

A high p-value (e.g. above 0.05)
X provides evidence for the null hypothesis,
i.e. the drugs are equivalent
cannot tell, one should look at the Cl s

If two studies report different p-values (e.g. 0.01 vs 0.1)
X the studies disagree
cannot tell, one should look at the Cl

Comparing confidence intervals

Quiz 2-95\% confidence interval

For large enough n, the confidence interval $[0.021 ; 0.336]$:

- contains the true incidence rate with probability 95%.
- contains 95% of the sample data.
- contains incidence rates values compatible with the data

For large enough n, in 95% of the replication studies:

- the (new) $\mathrm{Cl}_{\widehat{\lambda}_{\tau}, 95 \%}$ will contain the true incidence rate.
- the (new) estimate will be in the current $\mathrm{Cl}_{\hat{\lambda}_{\tau}, 95 \%}$.

When performing multiple comparisons:

- one should only adjust p-values
- one should adjust both p-values and confidence intervals

Quiz 2 - 95\% confidence interval

For large enough n, the confidence interval [$0.021 ; 0.336$]:
X contains the true incidence rate with probability 95%.
X contains 95% of the sample data.
contains incidence rates not statistically different with $\widehat{\lambda}_{\tau}$.

For large enough n, in 95% of the replication studies: the (new) $\mathrm{Cl}_{\widehat{\lambda}_{\tau}, 95 \%}$ will contain the true incidence rate.
X the (new) estimate will be in the current $\mathrm{C}_{\widehat{\lambda}_{r}, 95 \%}$.
When performing multiple comparisons:
$X \quad$ one should only adjust p-values
one should adjust both p -values and confidence intervals

95\% confidence intervals enable to represent the uncertainty about our estimate, e.g.:
risk: $\mathrm{C}_{\widehat{r}(\tau), 95 \%}=\left[\widehat{r}(\tau)-1.96 \sqrt{\frac{r(\tau)(1-r(\tau))}{n}}, \widehat{r}(\tau)+1.96 \sqrt{\frac{r(\tau)(1-r(\tau))}{n}}\right]$

Incidence rate: $\mathrm{Cl}_{\widehat{\lambda}_{\tau}, 95 \%}=\left[\widehat{\lambda}_{\tau} \exp \left(-\frac{1.96}{\sqrt{\tilde{D}}}\right), \widehat{\lambda}_{\tau} \exp \left(\frac{1.96}{\sqrt{\tilde{D}}}\right)\right]$
95% confidence intervals enable to represent the uncertainty about our estimate, e.g.:
risk: $\mathrm{C}_{\widehat{r}(\tau), 95 \%}=\left[\widehat{r}(\tau)-1.96 \sqrt{\frac{r(\tau)(1-r(\tau))}{n}}, \widehat{r}(\tau)+1.96 \sqrt{\frac{r(\tau)(1-r(\tau))}{n}}\right]$ (original scale: $\mathrm{Cl}_{\bullet, 95 \%}=\left[\widehat{\bullet}-1.96 \sigma_{\widehat{\bullet}}, \widehat{\bullet}+1.96 \sigma_{\bullet}\right]$)

Incidence rate: $\mathrm{Cl}_{\widehat{\lambda}_{\tau}, 95 \%}=\left[\widehat{\lambda}_{\tau} \exp \left(-\frac{1.96}{\sqrt{\widetilde{D}}}\right), \widehat{\lambda}_{\tau} \exp \left(\frac{1.96}{\sqrt{\widetilde{D}}}\right)\right]$ (log-scale: $\left.\mathrm{C}_{\widehat{\bullet}, 95 \%}=\left[\widehat{\bullet} \exp \left(-1.96 \sigma_{\log } \hat{\bullet}\right), \widehat{\bullet} \exp \left(1.96 \log \sigma_{\widehat{\bullet}}\right)\right]\right)$

Confidence interval - example

Asymptotic results
\checkmark fast, easy to describe
not reliable in small samples

Exact tests
very reliable
X computer intensive, not always available

Resampling procedures (e.g. boostrap, permutation)
widely applicable - little "math" involved
computer intensive

Confidence intervals - summary

95\% confidence intervals:

- represent the uncertainty about our estimate (reasonnable range of values)
- if it does not contain 0, there is evidence for an effect
- if it only contains only "small" values, there is evidence for the absence of a clinically relevant effect

When comparing two estimates
compute the confidence interval of the difference or ratio

Xdo not compare the confidence intervals (unless clear effect)

Likelihood approach - Why?

Systematic approach to:

- estimate parameters
- with their confidence intervals
- and associated significance tests

Especially useful in complex settings, e.g.:

- adjusting on covariates
- handling repeated measurements

Works well when we have:

- an iid ${ }^{3}$ sample
- a generative model for the sample

1. define a statistical model (blinded to the data)

$$
\mathbb{P}[Y=1]=\pi \text { and } \mathbb{P}[Y=0]=1-\pi
$$

2. express the likelihood
(probability of observing the data given the model)

$$
\mathcal{L}(\pi)=\prod_{i=1}^{n} \mathbb{P}\left[Y=Y_{i}\right]=\pi^{D}(1-\pi)^{n-D}
$$

3. express the log-likelihood

$$
\ell(\pi)=\log (\mathcal{L}(\pi))=D \log (\pi)+(n-D) \log (1-\pi)
$$

Displaying the likelihood

Consider the case where $n=10$ and $D=4$

- likelihood: $\mathcal{L}(\pi)=\pi^{4}(1-\pi)^{6}$
- \log-likelihood $\ell(\pi)=4 \log (\pi)+6 \log (1-\pi)$

Likelihood approach - roadmap (2/3)

log-likelihood: $\ell(\pi)=\log (\mathcal{L}(\pi))=D \log (\pi)+(n-D) \log (1-\pi)$
4. find the parameter value maximizing the likelihood (MLE)
i.e. solve ${ }^{4} \frac{d \ell(\pi)}{d \pi}=0 \quad \frac{d \ell(\pi)}{d \pi}=\frac{D}{\pi}-\frac{n-D}{1-\pi}$ so $\widehat{\pi}=\frac{D}{n}$
5. quantify the variance of the MLE

- express the second derivative of the likelihood

$$
\frac{d^{2} \ell(\pi)}{d \pi^{2}}=-\frac{D}{\pi^{2}}-\frac{n-D}{(1-\pi)^{2}}=-\frac{n \widehat{\pi}\left(1-2 \pi+\pi^{2} / \widehat{\pi}\right)}{\pi^{2}(1-\pi)^{2}}
$$

- evaluate the opposite of its inverse at the MLE

$$
\begin{aligned}
& \left.\frac{d^{2} \ell(\pi)}{d \pi^{2}}\right|_{\pi=\widehat{\pi}}=-\frac{n}{\pi(1-\pi)} \\
& \widehat{\sigma}_{\widehat{\pi}}^{2}=-\left\{\left.\frac{d^{2} \ell(\pi)}{d \pi^{2}}\right|_{\pi=\widehat{\pi}}\right\}^{-1}=\frac{\widehat{\pi}(1-\widehat{\pi})}{n}
\end{aligned}
$$

Likelihood approach - roadmap (3/3)

6. The MLE is (asymptotically) unbiased and normally distributed

$$
\widehat{\pi} \sim \mathcal{N}\left(\pi, \sigma_{\hat{\pi}}^{2}\right)
$$

- confidence intervals: $\left[\widehat{\pi}-1.96 \sigma_{\widehat{\pi}}^{2}, \widehat{\pi}+1.96 \sigma_{\widehat{\pi}}^{2}\right]$
- Wald test $t_{W}=\frac{\widehat{\pi-0.5}}{\sigma_{\widehat{\pi}}} \sim \mathcal{N}(0,1)$ under the null hypothesis of a prevalence of 0.5

Conclusion

Quantifying uncertainty

What we have seen today

What we have seen today

 Introduction:- graphical representation of survival data
- 3 data formats: individual, aggregated, 2 by 2 table

V Measures of disease frequency:

- definition and estimation of prevalence, odds, incidence rate, risk,
- unit: per person.time for incidence rates
- risk-rate relationship
- estimation of the risk under right-censoring
\checkmark Measures of association
- risk difference, relative risk, odds ratio
- chi-squared test

Vstimation and quantification of the uncertainty

- interpretation of \mathbf{p}-values
- interpretation and calculation of confidence intervals (Cls)
- BONUS: a glimpse at the likelihood theory

Take home messages

Statistical softwares can help you with estimation and quantification of the uncertainty ... but not with defining the parameter(s) of interest:

- prevalence (static) vs. incidence/risk (dynamic)
- e.g. (registry study) average 5 -year risk difference between treatment A and B in the danish population.

Time often plays a big role:

- effects may not be constant over time, especially treatment effects.

For the practical, document L2-summary.pdf contains

- formula (estimation, CIs)
- useful \mathbb{R} functions

Reference I

Kestenbaum, B. (2019). Epidemiology and Biostatistics: An Introduction to Clinical Research.

Interlude: high school physics

Period (T):

- time to complete one cycle
- unit: s

Frequency (f):

- the number of cycles per second
- $f=\frac{1}{T}$
- unit: $H z=s^{-1}$

Example: Heart rate at 60 vs. 120 beats per minute

- $T=1 \mathrm{~s}$ vs 0.5 s
- $f=1 \mathrm{~Hz}$ vs 2 Hz

Risk - hazard relationship

$$
\begin{aligned}
\lambda(t) & =\lim _{d t \rightarrow 0} \frac{\mathbb{P}[t<T \leq t+d t \mid T>t]}{d t} \\
& =\lim _{d t \rightarrow 0} \frac{\frac{\mathbb{P}[t<T \leq t+d t]}{d t}}{\mathbb{P}[T>t]}=\lim _{d t \rightarrow 0} \frac{\frac{\mathbb{P}[T \leq t+d t]-\mathbb{P}[T \leq t]}{d t}}{\mathbb{P}[T>t]} \\
& =\lim _{d t \rightarrow 0} \frac{\frac{(1-S(t+d t))-(1-S(t))}{d t}}{S(t)}=\frac{-\frac{\partial S(t)}{\partial t}}{S(t)} \\
\lambda(t) & =-\frac{\partial \log S(t)}{\partial t} \\
\Lambda(\tau) & =\int_{0}^{\tau} \lambda(t) d t=-\log S(\tau) \\
S(\tau) & =\exp (-\Lambda(\tau)) \\
r(\tau) & =1-\exp (-\Lambda(\tau))
\end{aligned}
$$

The epidemiologist's bathtub

- Prevalence: static
- Incidence rate/rate: dynamic
- risk: dynamic

The epidemiologist's bathtub

- Prevalence: static
$=$ incidence \times duration
- Incidence rate/rate: dynamic
- risk: dynamic

The epidemiologist's bathtub

- Prevalence: static
$=$ incidence \times duration
- Incidence rate/rate: dynamic
- risk: dynamic

Gambling at 1:3

Expected realisation

Interpretation of the Cl - analogy

A machine generates boxes with 95% probability to contain a gift.

- 95% of the boxes I receive contain gifts.
- a specific box contains or not gifts

Interpretation of the Cl

Similar except that we are "blind"

- no able to precisely check the content of the box the calculation of the Cl ensures that 95% of the time, it contains the (true) value.
$C I=[0.021 ; 0.336]$
the (true) death rate may or may not be between 0.021 and 0.336
the data at hand is concordant with a (true) death rate between 0.021 and 0.336

