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Immortal time is a span of cohort follow-up during which, because of exposure definition, the outcome under
study could not occur. Bias from immortal time was first identified in the 1970s in epidemiology in the context of
cohort studies of the survival benefit of heart transplantation. It recently resurfaced in pharmacoepidemiology, with
several observational studies reporting that various medications can be extremely effective at reducing morbidity
and mortality. These studies, while using different cohort designs, all involved some form of immortal time and the
corresponding bias. In this paper, the author describes various cohort study designs leading to this bias, quantifies
its magnitude under different survival distributions, and illustrates it by using data from a cohort of lung cancer
patients. The author shows that for time-based, event-based, and exposure-based cohort definitions, the bias in
the rate ratio resulting from misclassified or excluded immortal time increases proportionately to the duration of
immortal time. The bias is more pronounced with a decreasing hazard function for the outcome event, as illustrated
with the Weibull distribution compared with a constant hazard from the exponential distribution. In conclusion,
observational studies of drug benefit in which computerized databases are used must be designed and analyzed
properly to avoid immortal time bias.

bias (epidemiology); cohort studies; databases; epidemiologic methods; pharmaceutical preparations; relative
biological effectiveness; statistics; treatment outcome

Abbreviations: CI, confidence interval; COPD, chronic obstructive pulmonary disease; HR, hazard ratio; RR, rate ratio.

The randomized controlled trial design is essential to
evaluate the effectiveness and safety of medications and to
obtain regulatory approval for their use in clinical practice.
Yet, it rarely provides information on their pragmatic benefit
in terms of major disease outcomes. Nonexperimental ob-
servational studies have been conducted in pharmacoepi-
demiology in an attempt to fill this gap by assessing
long-term effects of medications on infrequent outcomes,
including mortality (1). The use of computerized health
databases, constituted from routinely collected administra-
tive or clinical data, has been encouraged, along with
cautions on the methodological complexities of conduct-
ing such observational studies (2–4). This trend has
led to an explosion in the last decade in the number of
published observational database studies of the impact of
medications.

Many of these observational studies have used a cohort
approach that emulates the randomized controlled trial de-
sign. This cohort approach, however, in its attempt to simplify
data analysis and presentation of results from the quasi–
randomized controlled trial approach, has produced a form
of bias called immortal time bias. This bias, first identified in
epidemiology in the 1970s in the context of heart transplant
research, has been recently appearing in an alarming num-
ber of pharmacoepidemiology papers. It was initially docu-
mented in studies of drug treatments for chronic obstructive
pulmonary disease (COPD) and allergic rhinitis (5–7). It
was shown to systematically underestimate the rate ratio,
thereby creating the false illusion that a medication is effec-
tive at reducing the rate of major disease outcomes (8–11).
In a previous paper, I identified 20 observational studies of
the effects of commonly prescribed drugs that were subject

Correspondence to Dr. Samy Suissa, McGill Pharmacoepidemiology Research Unit, Royal Victoria Hospital, 687 Pine Avenue West, Ross
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to immortal time bias (12). In this paper, I review the origins
of immortal time bias, describe five study designs that can
lead to this bias using examples taken from published stud-
ies, quantify its magnitude under different survival distribu-
tions, and illustrate the bias using data from a cohort of
patients with lung cancer.

THE BIAS IN EPIDEMIOLOGY

Immortal time refers to a span of time in the observation
or follow-up period of a cohort during which the outcome
under study could not have occurred (13, 14). It usually
occurs with the passing of time before a subject initiates
a given exposure. While a subject is not truly immortal
during this time span, the subject necessarily had to remain
event free until start of exposure to be classified as exposed.
An incorrect consideration of this unexposed time period in
the design or analysis will lead to immortal time bias.

The first recorded instance of bias from immortal time in
epidemiology was in the early 1970s in the context of two
cohort studies from Texas and Stanford University (Palo
Alto, California) of the benefit of heart transplantation
(15, 16). In the Texas Heart Institute study, the survival time
of 15 patients who received a heart transplant (mean 111
days, including the waiting time from acceptance for a trans-
plant until transplantation) was found to be longer than the
survival of 42 potential recipients who were accepted for
a transplant but did not receive one (mean 74 days) (15). In
the Stanford Heart Transplant study, the survival of 20 pa-
tients who received a heart transplant (mean 200 days after
transplantation) was found to be longer than the survival of
14 potential recipients who did not receive a transplant
(mean 34 days) (16).

Gail (17) identified a source of bias in these two studies
stemming from a relevant portion of follow-up time—
namely, the waiting time of all patients who survived to
make it to the transplant—that was not properly accounted
for in the data analysis. Indeed, because this portion of the
follow-up time was classified as exposed to transplantation
instead of unexposed, it offered a guaranteed survival time
to the transplanted group. As a result, by not being correctly
classified, this immortal time produced an artificial increase
in the mortality rate of the reference group, thus suggesting
a benefit of heart transplant surgery. In a reanalysis of the
Stanford Heart Transplant data, Mantel and Byar (18) found
that the apparent major survival advantage of the trans-
planted group disappears when the immortal time is prop-
erly accounted for by a time-dependent analysis (hazard
ratio (HR) ¼ 0.93, p ¼ 0.9).

This bias has appeared in several areas of epidemiology.
An environmental cohort study suggesting that increasing
duration of vinyl chloride exposure was associated with de-
creasing mortality was corrected with a proper analysis that
showed otherwise (19, 20). It was also uncovered in a study
suggesting no association between increasing exposure to
asbestos and lung cancer mortality (21, 22). This bias, under
the name survivor treatment selection bias, appeared in the
context of treatment for human immunodeficiency virus
(23). More recently, immortal time bias was shown to elu-

cidate a prior study that suggested the surprising proposition
that movie Oscar winners live longer (24, 25).

THE BIAS IN PHARMACOEPIDEMIOLOGY

Lately, this bias has been appearing in several observa-
tional studies of the effects of medications that used com-
puterized health care databases as their source of data (12).
These studies used different approaches to form the cohort,
leading to variations in the resulting immortal time bias.
These design variations in cohort definition are described
below.

Time-based cohorts

Time-based cohorts are characterized by having cohort
entry defined by a time point, usually a calendar date, with
subjects followed up from this date until the occurrence of
the outcome event under study or another calendar time
point. An example is the cohort study of 16,941 asthma
patients identified by using data from a health maintenance
organization in eastern Massachusetts, with cohort entry de-
fined as October 1, 1991, and follow-up until the first hos-
pitalization for asthma or September 30, 1994 (26). In this
study, exposure was measured by the mean number of pre-
scriptions for inhaled corticosteroids dispensed during
follow-up. This approach resulted in the implausible finding
that the use of less than one canister of inhaled corticoste-
roids per year was associated with a significant reduction of
60 percent in the risk of hospitalization for asthma.

In studies using this design, the analysis has been based
on exposure defined by a prescription or the mean number of
prescriptions during follow-up (7, 26, 27). Clearly, the time
between cohort entry and the first prescription is ‘‘immortal’’
for the exposed subjects; to have received the treatment
implies that the subject ‘‘survived’’ until the first prescrip-
tion. According to this phenomenon, the subjects classified
as exposed will have a guaranteed survival advantage over
the unexposed subjects: they will be artificially ‘‘protected’’
during the immortal period until they become exposed (11).
The solution is simply to classify as unexposed this immor-
tal person-time prior to the first prescription and the sub-
sequent person-time as exposed, using either a Poisson
model approach if the hazards are constant or, alternatively,
a Cox proportional hazards model with a time-dependent
definition for the drug exposure.

Event-based cohorts

Event-based cohorts are characterized by cohort entry
defined on the basis of a clinical event, such as the first
diagnosis or hospitalization for a given condition, with sub-
jects followed up until the occurrence of the outcome event
under study. To emulate a randomized trial, exposure to
treatment is defined by a prescription within a certain period
after cohort entry. This exposure time can vary from short
periods such as the first 90 days in a 1-year follow-up study
to the entire follow-up period. An example is the study in
which the Ontario, Canada, health insurance databases were
used to identify a cohort of 13,623 elderly patients
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discharged from a hospital with a diagnosis of acute myo-
cardial infarction between 1993 and 1995 and followed for
up to 1 year after discharge or until death (28). The treated
group was formed from all subjects who received two or
more prescriptions for a beta-blocker during follow-up,
while all others formed the untreated group. The study re-
ported that the patients given beta-blockers, including with
the lowest doses, at least twice during follow-up had signif-
icantly lower rates of death (HR ¼ 0.40, 95 percent confi-
dence interval (CI): 0.34, 0.47).

The time between cohort entry and the second prescrip-
tion for a beta-blocker is clearly ‘‘immortal’’ since the ex-
posed subjects must survive this period to receive their two
prescriptions. Thus, classifying this immortal period from
hospital discharge until the second prescription as exposed
when computing the mean survival time of the group ex-
posed to the beta-blocker provides this ‘‘treated’’ group with
an artificial survival advantage over the unexposed subjects.
Here again, a solution is to classify as unexposed the im-
mortal person-time prior to the second prescription using
either a Poisson model approach or a Cox proportional haz-
ards model with time-dependent drug exposure. Alterna-
tively, redefining time zero as the day after the selected
exposure time period (for example, 90 days in Sin and Tu
(5)) removes the source of immortal time bias and has the
advantage of using a Cox model analysis without time-
dependent exposures (29).

Exposure-based cohorts

Some studies define cohort entry hierarchically on the
basis of exposure, such as the first prescription for the drug
under study. Thus, first, subjects who receive the treatment
under study are considered ‘‘exposed’’ and enter the cohort
at the time they start exposure. Second, all other subjects are
then considered unexposed, and their cohort entry is defined
arbitrarily by a comparison treatment or a diagnosis.

An example is the General Practice Research Database
study of the effect of inhaled corticosteroids and long-acting
beta-agonists on mortality in patients with COPD (6). First,
all 1,045 COPD patients who received prescriptions for both
an inhaled corticosteroid and a long-acting beta-agonist dur-
ing 1990–1999 were identified and formed the exposed
cohort, with follow-up starting at the time of their first com-
bined prescription. They were compared with 3,620 COPD
patients who used other treatments (bronchodilators) but not
inhaled corticosteroids or long-acting beta-agonists during
the observation period, with follow-up starting at the time of
their first prescription for a bronchodilator. In a 3-year
follow-up, the rate of death was lower with combination
therapy compared with bronchodilators (HR¼ 0.48, 95 percent
CI: 0.31, 0.73).

Because of the hierarchic definition of exposure, the ex-
posed subjects may also have been exposed to the compar-
ison treatment or have had the diagnosis used to define the
unexposed group prior to their exposure-defined cohort en-
try date. Indeed, table 1 of that study (6) confirms that the
majority of exposed subjects used bronchodilators prior to
starting combination therapy. Thus, these exposed subjects
were in fact also exposed to the comparison medication for

some time before reaching this combination exposure status.
This preexposure time period is immortal since the subjects
who reach the combination treatment status will necessarily
do so alive. Had they died before receiving this therapy, they
would, by definition, have belonged to the bronchodilator
cohort. Thus, immortal time bias occurs because valid bron-
chodilator person-time of follow-up with no deaths is not
accounted for in the reference rate of death, resulting in an
artificial increase in the rate of death in the reference group,
leading to a spurious appearance of effectiveness (10). The
solution is to include in the reference rate calculation this
immortal person-time prior to exposure from the combina-
tion therapy that was excluded by design. This can also be
achieved by using a Cox proportional hazards model in
which time zero is taken as the first occurrence of the ex-
posure or reference definition and a time-dependent factor
for the drug exposure.

Multiple-event-based cohorts

Some studies define cohorts by requiring several events
over time, such as the number of times a diagnosis was made
or a drug was prescribed. Immortal time can be introduced
when follow-up starts at the first of the events. In this case,
the time between the first and last events is immortal. An
example is a cohort study of the cardiac risks of cycloox-
ygenase-2 inhibitors in which subjects were required to have
at least two prescriptions of a given cyclooxygenase-2 in-
hibitor (rofecoxib or celecoxib) to be considered exposed
(30). The 15,271 subjects in the celecoxib cohort and the
12,156 subjects in the rofecoxib cohort were followed from
their first prescription for up to 1 year until death or hospi-
talization for acute myocardial infarction. On the other
hand, the 100,000 nonusers of these drugs were followed
from a date selected randomly from the observation period.
In the 1-year follow-up, the study reported that the rate of
acute myocardial infarction in subjects was similar with
rofecoxib (HR ¼ 1.0, 95 percent CI: 0.8, 1.4) or celecoxib
(HR ¼ 0.9, 95 percent CI: 0.7, 1.2) compared with that for
the unexposed subjects.

With this design, the time span between the two prescrip-
tions defining the exposed subjects is necessarily ‘‘immortal.’’
Indeed, subjects who died after their first prescription
for one of these two cyclooxygenase-2 inhibitors were not
included in these exposed groups. On the other hand, the
unexposed subjects could have died anytime during follow-
up. Such a cohort definition will necessarily provide an
artificial survival advantage to the exposed group, with the
resulting bias producing an underestimate of the true rate
ratio. The solution here is to define cohort entry by the
second prescription and to include all person-time after
the first prescription as unexposed, using a Cox proportional
hazards model with a time-dependent definition for the drug
exposure.

Event-exposure-based cohorts

These cohorts are defined by identifying all subjects with
a given diagnosis, whereas exposure is defined by a prescrip-
tion for the drug of interest on the same day as the diagnosis
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(31). An example is the study that used the General Practice
Research Database to identify a cohort of 4,398 patients
hospitalized for COPD, 1,091 of whom received a prescrip-
tion for an inhaled corticosteroid on the same day as dis-
charge to form the exposed group. Of the remaining 3,307
subjects, however, only those 538 subjects who did not re-
ceive a prescription for an inhaled corticosteroid during the
entire year after discharge formed the unexposed group. In
the 1-year follow-up, the rate of death was lower in the
inhaled corticosteroid exposed group compared with those
unexposed (HR ¼ 0.69, 95 percent CI: 0.52, 0.93).

In this study, the 2,769 subjects who received an inhaled
corticosteroid prescription during the 1-year follow-up and
who were thus excluded from the study cohort all had im-
mortal time. Indeed, to determine that a subject received an
inhaled corticosteroid prescription during the follow-up im-
plies that the subject must have been alive at that time.
Moreover, these subjects were all unexposed during this
immortal time and could die only after exposure. Thus,
excluding these subjects with their immortal unexposed
person-time from the reference group and mortal exposed
person-time from the treated group will lead to a spurious
appearance of effectiveness (32). Here again, the solution is
to include all subjects and to classify as unexposed the im-
mortal person-time prior to the first prescription and the
subsequent person-time as exposed.

QUANTIFICATION OF THE BIAS

Consider a cohort in which the subjects are divided into
exposed and unexposed according to the time-based, event-
based, and exposure-based approaches described previously.
Let i ¼ 0 denote the group of unexposed subjects and i ¼ 1
the group of ‘‘exposed’’ subjects. Note that the ‘‘exposed’’
subjects are considered exposed but are in fact also unex-
posed for a portion of their follow-up, as explained above,
or prior to their start of exposure. Furthermore, denote for
i ¼ 0, 1:

Ti ¼ Total person-time for the group of subjects i,

Ci ¼ Number of subjects with an outcome event in group i

k ¼ Ratio of person-time T0/T1, and

p ¼ Proportion of T1 that is in fact unexposed (immortal
time).

To quantify the magnitude of the bias, consider two dis-
tributions for the occurrence of the outcome event over time,
namely, the exponential distribution with its constant hazard
function and the Weibull distribution with a decreasing haz-
ard function.

Constant hazard: exponential distribution

By assuming that the rate of outcome is constant over
time and classifying exposure properly, the unbiased rate
ratio RRu is estimated by

RRu ¼ ðC1=C0ÞððT0 þ pT1Þ=ðð1 � pÞT1ÞÞ
¼ ðC1=C0Þððk þ pÞ=ð1 � pÞÞ:

For time-based and event-based cohorts, the unexposed
immortal person-time from cohort entry that preceded
the actual start of exposure in the ‘‘exposed’’ group is mis-
classified as exposed. The corresponding biased rate ratio
RRb is then given by

RRb ¼ ðC1=C0ÞðT0=T1Þ
¼ ðC1=C0Þ k:

Using the ratio of the biased to the unbiased rate ratios as
a measure of the magnitude of the bias, we find that

Bias ¼ RRb=RRu

¼ k ð1 � pÞ=ðk þ pÞ:

Figure 1 displays this bias as a function of p for three
values of k, namely, 0.1, 1, and 10, representing a wide range
in the ratio of the sizes of the two groups. Note that the bias
is rapidly very large when the size of the unexposed group is
one tenth that of the ‘‘exposed’’ group, for practically any
value of p. When k ¼ 10, the bias appears to be linearly
related to p. In this case, the bias tends to 1 � p as k tends to
infinity.

For exposure-based cohorts, the unexposed person-time
that preceded exposure in the ‘‘exposed’’ group is generally
overlooked and unaccounted for. In this case, the corre-
sponding biased rate ratio RRb is given by

RRb ¼ ðC1=C0ÞðT0=ð1 � pÞT1Þ
¼ ðC1=C0Þðk=ð1 � pÞÞ:

The magnitude of the bias is given by

Bias ¼ RRb=RRu

¼ k=ðk þ pÞ:

Figure 2 displays this bias also as a function of p for the
same three values of k ¼ 0.1, 1, and 10. Note that the bias is
large when the unexposed group is much smaller than
the ‘‘exposed’’ group (k ¼ 0.1). On the other hand, the
bias appears to fade away when k ¼ 10. Indeed, in this
case, the ratio measure of the bias tends to 1 as k tends to
infinity.

Decreasing hazard: Weibull distribution

Assuming that the rate of outcome is decreasing over time
by using a Weibull distribution with scale parameter a <1
and classifying exposure properly, the unbiased rate ratio
RRu is estimated by

RRu ¼ ðC1=C0ÞaððT0 þ pT1Þ=ðð1 � pÞT1ÞÞa

¼ ðC1=C0 Þaððk þ pÞ=ð1 � pÞÞa:

Similarly as above, the biased rate ratio RRb is given by

RRb ¼ ðC1=C0ÞaðT0=T1Þa

¼ ðC1=C0Þaka

and
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Bias ¼ ½kð1 � pÞ=ðk þ pÞ�a:
When cohort entry is defined by exposure, the biased rate

ratio RRb is given by

RRb ¼ ðC1=C0ÞaðT0=ð1 � pÞT1Þa

¼ ðC1=C0Þaðka=ð1 � pÞaÞ

and the magnitude of the bias is given by

Bias ¼ k
a
=ðk þ pÞa:

Figures of the magnitude of the bias for this Weibull
distribution with decreasing hazard for the outcome event
(not shown) show effects similar in trend but more pro-
nounced than those in figures 1 and 2 for the constant hazard.

ILLUSTRATION

The bias from the five cohort definitions can be illustrated
by using data from the United Kingdom’s General Practice
Research Database, a primary care database that contains
diagnostic and prescribing records for approximately 3.5
million patients from more than 300 general practices
(33). The five cohorts were selected from the population
of all patients with a first diagnosis of lung cancer between
1995 and 2005, for which all prescriptions for warfarin or
clopidogrel, two antithrombotic drugs, were identified.

The time-based cohort had entry defined by January 1,
2003, and exit by December 31, 2003, with exposure defined
as an antithrombotic drug prescription any time during the
2003 1-year period. The event-based cohort was defined by
the day of lung cancer diagnosis as cohort entry and follow-
up for 1 year, with exposure defined as an antithrombotic
drug prescription during the first 90 days of follow-up. The
exposure-based cohort had entry defined by the first anti-
thrombotic drug prescription after the lung cancer diagnosis

for the exposed or the date of the lung cancer diagnosis for
the unexposed (random sample of 500), with 1-year follow-
up for both. The multiple-event-based cohort had cohort
entry defined by the first of two antithrombotic drug pre-
scriptions within a year after the lung cancer diagnosis for
the exposed or a random date after the lung cancer diagnosis
date for the unexposed (random sample of 500), with 1-year
follow-up for both. Finally, the event-exposure-based cohort
had entry defined 30 days after the lung cancer diagnosis
date, with the exposed defined by an antithrombotic drug
prescription on the same day or in the previous month (to
increase the numbers) and the unexposed by subjects with
no antithrombotic drug prescription during the 1-year
follow-up.

For all five cohorts, the outcome was death from any
cause during the 1-year follow-up from the respective cohort
entry dates. The hazard ratios of death associated with an-
tithrombotic drug exposure were estimated for each cohort
by using a Cox proportional hazards model. For the biased
approaches, exposure was defined as described above,
namely, without any consideration for the timing of the
exposure during follow-up. The corrected analysis defined
exposure by using a time-dependent variable, with the sub-
ject unexposed until exposure and exposed thereafter. The
only exception was the event-based cohort, for which the
approach simply involved exclusion of the first 90 days of
follow-up used to define exposure.

The base cohort included 8,176 subjects with a lung can-
cer diagnosis after January 1, 1995. Table 1 shows that, for
all cohort definitions, an important portion of follow-up time
is misclassified or excluded by the crude analysis that does
not account for the immortal person-time. These resulting
crude analyses lead to hazard ratios all below 1 for the effect
of the use of antithrombotic drugs on mortality, suggesting
an important benefit of these drugs. The corrected analyses
that properly classify the exposure over time lead to higher
hazard ratios.

FIGURE 1. For time-based and event-based cohorts, the plots show
the ratio of the biased to the unbiased rate ratios, representing the
magnitude of the bias, as a function of the proportion of misclassified
immortal time p for three values of k, the ratio of unexposed to
exposed person-time, namely, k ¼ 0.1, 1, and 10.

FIGURE 2. For exposure-based cohorts, the plots show the ratio of
the biased to the unbiased rate ratios, representing the magnitude of
the bias, as a function of the proportion of excluded immortal time p for
three values of k, the ratio of unexposed to exposed person-time,
namely, k ¼ 0.1, 1, and 10.
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DISCUSSION

This paper showed that immortal time bias can occur in
observational studies of medication effects under a variety
of cohort designs. This bias systematically overestimates the
outcome rate in the unexposed group and at times also
underestimates the rate in the group exposed to the medica-
tion. As a result, the rate ratio of exposure is underestimated,
creating the illusion that the drug is effective in preventing
the outcome under study. This paper also showed that the
magnitude of this bias on the estimated rate ratio can be
large.

This bias has been known to clinical epidemiology since
the early 1970s, when it was identified in two clinical stud-
ies evaluating heart transplant survival (15, 16). Gail (17)
explained that the waiting time of all patients who survived
to make it to the transplant (immortal time period) had to be
classified as unexposed to transplantation. Because of in-
correct classification of this immortal time as exposed to
transplantation, the transplanted group had been conferred
an artificial survival advantage while the nontransplanted
group had an artificial increase in the mortality rate, thus
suggesting a benefit of heart transplant surgery. The current
reappearance of this phenomenon is not exclusive to phar-
macoepidemiology. Recently, the study that suggested that
movie Oscar winners live longer was found to be subject to
immortal time bias (24, 25).

Immortal time bias has been referred to in different ways,
including survivor treatment selection bias or simply sur-
vival bias (23, 29). These terms may have introduced some
confusion since immortal time bias is not a form of selection
bias, but rather information bias, whereas survival bias refers
to studies that use prevalent rather than incident cases (34, 35).

The appropriate approach for the studies using these de-
signs requires that all immortal time be fully accounted for.
First, at the design stage, the cohorts have to include all
follow-up time, including that before the start of exposure.
For example, the exposure-based cohort studies define co-
hort entry by the first drug exposure for the exposed and
a first diagnosis for the unexposed. By doing so, the time
from the first diagnosis to the first drug exposure for all
exposed subjects is immortal and must be included in the
analysis as unexposed. For multiple-event cohorts, cohort
entry must simply be defined as the nth event for all subjects
to avoid the immortal time generated by the time one must
survive to get from the first to the nth event. This proper
definition was used in several pharmacoepidemiology stud-
ies using multiple prescriptions to define the cohort (36–38).
Second, at the analysis stage, the proper approach requires
that the immortal time be correctly classified in terms of
exposure. This is achieved by a time-dependent analysis
such as that used by Mantel and Byar (18) in their reanalysis
of the heart transplant data. Simple person-time methods or
more sophisticated techniques, such the Cox proportional
hazards model with time-dependent exposures, which clas-
sify the patients as unexposed until they become exposed
and exposed thereafter, will provide proper estimates. How-
ever, these techniques assume that initiation and interruption
of treatment are subject to random censoring, in the absence
of which approaches such as inverse probability of censor-
ing weighting can be considered (39).

The number of observational pharmacoepidemiology
studies conducted has grown substantially during the last
decade. The public health and policy impact of this research
on the risks and benefits of medications is important. In the

TABLE 1. Hazard ratios of death associated with antithrombotic drugs using the five different cohort definitions applied to patients

with a lung cancer diagnosis, estimated by the Cox proportional haxards model using the biased and correctly classified approaches

No. of
subjects

No. of
deaths

No. of person-years
(immortal time*)

Biased
HRy

95% CIy
Corrected

HR
95% CI

Time-based cohort

No ATDy during a 1-year period 1,749 659 1,411.2 1 Reference 1 Reference

ATD during a 1-year period 146 50 128.3 (34.4) 0.83 0.63, 1.11 1.13 0.84, 1.50

Event-based cohort

No ATD during a 90-day period 7,896 5,402 4,068.3 1 Reference 1 Reference

ATD during a 90-day period 280 162 189.5 (23.7) 0.66 0.56, 0.77 1.02 0.85, 1.22

Exposure-based cohort

No ATD 500 352 248.6 1 Reference 1 Reference

ATD exposure 476 260 308.1 (316.5) 0.73 0.63, 0.85 1.05 0.87, 1.28

Multiple-event-based cohort

No ATD 500 357 242.5 1 Reference 1 Reference

ATD exposure 388 188 276.3 (291.1) 0.48 0.40, 0.57 0.91 0.76, 1.10

Event-exposure-based cohort

No ATD 6,392 4,131 3,545.0 1 Reference 1 Reference

ATD exposure on the same day 174 101 109.1 0.80 0.66, 0.98 0.95 0.83, 1.09

ATD exposure in the follow-up year 232 122 172.7 (61.0)

* Immortal time either misclassified in the analysis or excluded by design and unaccounted for.

y HR, hazard ratio; CI, confidence interval; ATD, antithrombotic drugs.
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United States alone, there were 545 million physicians visits
involving medication therapy in the year 2000, with 2.3
medications prescribed per visit (40). Consequently, greater
vigilance will be needed to recognize and avoid this bias that
is becoming more prevalent with the increasing number of
available computerized health databases used to conduct
these observational studies of drug effects.
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