UNIVERSITY OF COPENHAGEN

Faculty of Health Sciences

Analysis of cross-over studies Statistical analysis of repeated measurements 2024

Julie Forman Section of Biostatistics, University of Copenhagen

Course day 4 contents

Part I. Cross-over studies

- Considerations about study design and statistical analysis
- Single measures from an AB-BA design
- Repeated measurements from an AB-BA design

Part II. Reliability of measurement methods

- Considerations about study design and statistical analysis
- Reliability of a single measurement method
- Agreement between two measurement methods

Outline

Cross-over designs

Analysis of single measures from the AB-BA design

Analysis of repeated measurements from the AB-BA design

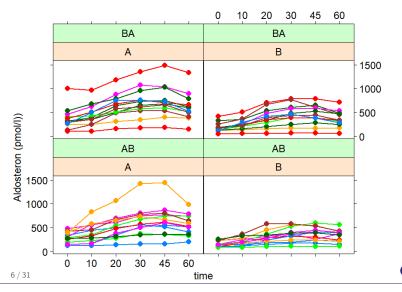
Case study: An experiment with potassium

Study with n = 25 healthy volunteers randomized to either

- ► AB Four months of potassium supplement (period 1) followed by two month wash-out and four months of placebo (period 2).
- ▶ BA Four months of placebo (period 1) followed by two month wash-out and four months of potassium supplement (period 2).

Several outcomes were collected at the end of each treatment period, but today we consider only serum aldosteron (pmol/l) measured before and during angiotensin stimulation.

Reference: Dreier et al. (2021): *Effect of increased potassium intake on the renin-agiotensin-adeosterone system and subcutaneous resistance arteries: a randomized crossover study*, Nephrology, Dialysis, Transplantation 36.


Case study: Single measure

Serum concentration of aldosteron (pmol/l) after four months of:

- A: potassium supplement
- В А AB BA 1000 Aldosteron (pmol/l) 800 600 · 400 200 A В treatment
- B: placebo

Case study: Repeated measurements

... and in response to 30 minutes angiotensin stimulation.

Why use a cross-over design?

When using a **paired study design**, we get a **higher statistical power** from **fewer testpersons** compared to a two-sample design.

We can make use of this by applying **different treatments** to e.g. the left and right eye of the same patient **at the same time**.

However, this only works with treatments that have a **local effect**. We *cannot* apply two treatments that have a **global effect** simultaneously, since then their effects cannot be **separated**.

But we *can* apply two treatments that have a **temporary effect** to the same person **at two different time points**. That way, we can separate the effects as long as the **time between treatments** is sufficiently long that the previous effect has **washed-out**.

Considerations about design and statistical analysis

Fixed vs randomized sequence?

Recommended choice: Randomized.

Single measures or repeated measurements from each period?

We recommend reducing the repeated measurements into summary statistics to simplify results and computations.

Should we adjust for period effect?

Recommended choice: Yes.

Should we test for carry-over effect?

Recommended choice: No.

Should we use a t-test or a linear mixed model?

It depends on sample size, on whether there are missing data, and for what reason they are missing (see lecture 6).

Fixed vs randomized sequence

Fixed sequence (sometimes reasonable):

- ▶ All subjects receive treatments in the same order, $A \rightarrow B \rightarrow ...$
- **Limitation:** Cannot separate the treatment and period effects.
- Analyze as single group follow-up study (course day 1).

Randomized sequence (recommended):

- Subjects are randomized to different orders, e.g. AB or BA.
- Advantage: We can separate treatment and period effects.
- With more than two treatments we get many orderings, e.g. ABC, ACB, BAC, BCA, CAB and CBA with three treatments.
- If only some sequences are included, there may be problems separating treatment and period effects (see exercise 4).

Single measures vs repeated measurements

Most cross-over studies collect single measures:

- ▶ That is one of each outcome from each period.
- Statistical analysis is straightforward.

But some collect repeated measurements:

- E.g. Series of measurements from each period.
- It it not clear how to model these series optimally:
 - Which interactions should be included as fixed effects?
 - Which covariance pattern is apropriate?
- If you have all but a few repetitions, my recommendation is to reduce to summary statistics (e.g. AUC).
- Ideally, summary statistics and model should be specified in the protocol to prevent manipulation of the evidence.

Period effect

EMA and FDA guidelines recommend adjusting for a potential period effect when analysing crossover studies.

Differences between periods ought to be random when the washout is sufficient and the disease is in steady state. Nevertheless, we sometimes find a period effect due to:

- Seasonal variation.
- Differences in calibration.
- Compliance issues (worrysome, may affect treatment effect).

In case there is a period effect:

You gain a bit of statistical power by adjusting for it. (and if there is no period effect, adjusting for it is harmless).

Carry-over effect

If the treatment effect differs between the two periods, then we have an **interaction** between the treatment and the period effect.

- ► This is often interpreted as a carry-over effect.
- I.e. an enhanced or diminished effect of a treatment caused by the treatment(s) from the previous period(s).

BUT: Crossover studies aim at an overall treatment effect.

- This is what the studies are **powered** for.
- Not various treatment effects depending on what treatment patients did or did not receive previously.

Carry-over effects should be **ruled out** in the **planning stage** by ensuring a **sufficiently long wash-out** between the treatments.

If you cannot rule out a carry-over effect, then you should use a different design for your study.

Test of carry-over effect

Historically, statisticians have recommended testing for carry-over effect before evaluating the treatment effect.

BUT: Studies are usually not powered for testing the interaction.

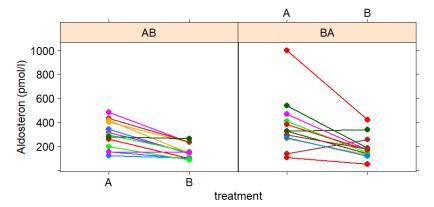
- If there is a genuine carry-over effect it is likely that the test won't find it (high risk of type II error)
- If there is no carry-over effect, one in twenty tests will come out with a false positive (5% risk of type I error).

EMA and FDA guidelines **dis**recommends testing for carry-over.

Outline

Cross-over designs

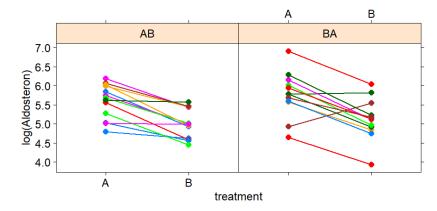
Analysis of single measures from the AB-BA design


Analysis of repeated measurements from the AB-BA design

14/31

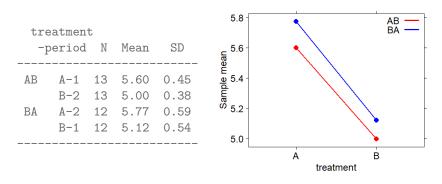
Case study: Single measures

A) potassium supplement, B) placebo.



Concentrations have a **skew distribution** and this has also been found by other studies in the litterature.

15/31


Case study: Data on log-scale

After log-transformation:

The distribution of the concentrations looks more symmetrical.

Trends in summary statistics

- Means tend to be higher with treatment A compared to B, and somewhat higher for sequence BA compared to AB
- Same trend in the SDs.
- ▶ No apparent effect of period (curves are parallel).

Model for single measures

Fixed effects:

- treatment and period
- **NOT** the treatment*period-interaction.

Covariance structure:

- Potentially outcomes could be more variable with one treatment than with the other.
- If we had more than two treatments, outcomes from some particular treatments could be stronger correlated than others.
- Hence we assume an unstructured covariance pattern with treatment as the replication factor.

Two-way ANOVA like model

Systematic effect of treatment and period and **no interaction**:

Mean	treatment=B (placebo)	treatment=A (potassium)
period=1	α	$\alpha + \beta$
period=2	$\alpha + \gamma$	$\alpha + \beta + \gamma$

Default regression parameters:

- Intercept (mean with placebo in period 1, reference point).
- Effect of potassium (assumed the same in both periods)
- Effect of period (assumed the same for both treatments)

Individual deviations from the population mean are assumed 2D-normally distributed with possibly treatment dependent variances.

R-code and output

Fixed effects: logaldo ~ period + treatment

 estimate
 se
 df
 lower upper p.value

 (Intercept)
 5.049
 0.102
 30.81
 4.84
 5.258
 <0.001</td>

 period2
 0.015
 0.085
 22.758
 -0.161
 0.191
 0.861

 treatmentA
 0.627
 0.085
 23.01
 0.452
 0.802
 <0.001</td>

Estimated treatment effect (ratio between geometric means): $\blacktriangleright \exp(0.627) \simeq 1.87$ (95% CI: 1.57-2.23).

more output

The cross-over study attains higher power with fewer subjects compared to a two-sample design, but only if the correlation between the paired outcomes is reasonably high.

Residual variance-covariance: unstructured

- correlation structure: ~0 + treatment B A B 1.000 0.755 A 0.755 1.000

- variance structure: ~treatment standard.deviation ratio sigma.B 0.542 1.000 sigma.A 0.502 0.927

Was the study design succesful?

Alternative approach based on t-test

Compute the difference in outcomes from period 1 and 2 and compare these between AB and BA using Students t-test.

► **AB:** Mean(
$$\Delta$$
) = (α + β) - (α + γ) = β - γ

- ▶ **BA:** Mean(Δ) = $\alpha (\alpha + \beta + \gamma) = -\beta \gamma$
- The difference in mean Δ 's is 2β (2 x treatment effect).
- > t.test(delta~sequence, data=wide, var.equal=TRUE)

t = 7.4018, df = 23, p-value = 1.585e-07

95 percent confidence interval: 0.9039391 1.6051951

0.9039/2=0.452 and 1.6052/2=0.802 (same as lmm)

Mixed model vs t-test

In case the data is complete (no missing values):

You get the same results unless sample size is so small that the mixed model approximation to the degrees of freedom is poor.

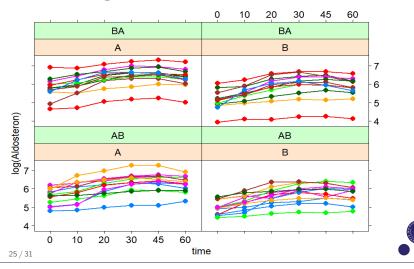
In case there are missing data:

- ▶ The t-test only use complete cases which may be sub-optimal.
- The mixed model makes more optimal use of the data when missing values are *missing at random* (see lecture 6).
- Nevertheless, complete case is often a sensible choice for the primary analysis in a randomized crossover trial:

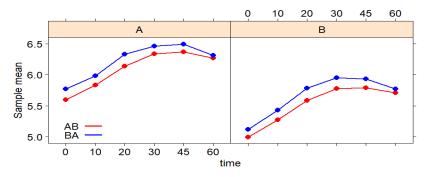
We compare the treatment effect in those patients who are able to complete both treatments according to protocol.

Outline

Cross-over designs


Analysis of single measures from the AB-BA design

Analysis of repeated measurements from the AB-BA design


Case study: Repeated measurements

Log-transformed concentrations of aldosteron in response to 30 minutes angiotensin stimulation:

Trends in summary statistics

Compute sample means for each combination of time and treatment within each sequence gruop:

Seeming effects of: time and treatment. No obvious effects of: period or time*treatment interaction.

Model for repeated measurements

Fixed effects:

period, treatment, time, and treatment*time (we are interested in how treatment affects the time effect).

Covariance:

- We expect that observations within the same treatment-period are more strongly correlated when they are close in time.
- We also expect correlation between the paired observations across the two periods, but likely not as strong.
- ► Variances may differ between treatment and time points.
- Use an unstructured covariance pattern! (Note that lmm takes a while to run with 12 replicates).

Output: Estimates on log-scale

Fixed effects: logaldo ~ period + treatment + time + treatment:time

	estimate	se	df	lower	upper	p.value	
(Intercept)	5.03	0.096	29.1	4.834	5.226	< 2e-16	***
period2	0.052	0.047	3.3	-0.091	0.195	0.346	
treatmentA	0.628	0.083	23.1	0.456	0.801	1.18e-07	***
time10	0.292	0.04	22.9	0.209	0.374	2.09e-07	***
time20	0.624	0.065	24	0.489	0.759	1.26e-09	***
time30	0.804	0.069	24	0.662	0.945	1.99e-11	***
time45	0.801	0.072	23.8	0.652	0.951	6.96e-11	***
time60	0.683	0.065	23.6	0.549	0.817	2.20e-10	***
<pre>treatmentA:time10</pre>	-0.068	0.044	21.9	-0.159	0.023	0.137	
<pre>treatmentA:time20</pre>	-0.075	0.054	23.5	-0.186	0.036	0.177	
<pre>treatmentA:time30</pre>	-0.09	0.056	23.7	-0.207	0.026	0.122	
treatmentA:time45	-0.056	0.061	23.6	-0.183	0.071	0.370	
treatmentA:time60	-0.079	0.055	23.6	-0.194	0.035	0.164	orca

Results: Increase from baseline (time=0)

Switch reference to get the estimated time effect for the other treatment and back-transform with exp for interpretation.

Ratio increase in median aldosteron (pmol/l) from baseline to each follow-up during 30 minute angiotensin stimulation

	Traeatment A	Treatment B	P-value
time	Estimate (95\% CI)	Estimate (95\% CI)	A vs B
10	1.25 (1.15;1.36)	1.34 (1.23;1.45)	0.14
20	1.73 (1.53;1.96)	1.87 (1.63;2.14)	0.18
30	2.04 (1.79;2.33)	2.23 (1.94;2.57)	0.12
45	2.11 (1.84;2.41)	2.23 (1.92;2.59)	0.37
60	1.83 (1.62;2.06)	1.99 (1.73;2.26)	0.16

The response to the stimulation is slightly stronger with placebo, but not significantly so at any follow-up time.

29/31

Alternative results: Relative differences in concentration

Remove intercept and main effect of time from model formula to get treatment differences at each separate time point.

Ratio difference in median aldosteron (pmol/l) for A vs B before and during 30 minute angiotensin stimulation

time	Estimate (95\% CI)	P-value
0	1.87 (1.58;2.23)	<.0001
10	1.75 (1.47;2.09)	<.0001
20	1.74 (1.48;2.04)	<.0001
30	1.71 (1.45;2.02)	<.0001
45	1.77 (1.51;2.08)	<.0001
60	1.73 (1.53;1.96)	<.0001

Concentrations are overall higher with A compared to B and the relative difference seems to be stable during stimulation.

But then again...

Are all of these comparisons clinically relevant - ?!?

- Concentrations at each time point (6 comparisons)?
- Increments since time 0 (5 comparisons)?
- ▶ Increments over all pairs of time points (15 comparisons)?

BE CAREFUL

- Increased risk of false positives due to multiple testing.
- Don't drown yourself/your reader in statistical results.

BETTER: A few carefully selected summary statistics.

Relative difference	Estimate (95\% CI)	P-value
before stimulation		<0.0001
incremental AUC	1.75 (1.50;2.04)	<0.0001
31 / 31		