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1 Introduction

This tutorial is the first in a series developed for the Ph.D. course Statistical Analysis of Cor-
related and Repeated Measurements for Health Researchers taught every fall at the Faculty of
Health Science of the University of Copenhagen.

In this, we offer a crash course on linear mixed models for anyone planning to analyze quanti-
tative repeated measurements data.

For a gentle introduction we exemplify single group studies. Similar analyses can be applied to
study designs where repeated measurements on the same subjects have been made over e.g.:

• Pre-specified, follow-up times as in the exemplified case study.

• Pre-specified treatments in a fixed sequence cross-over study.

• Pre-specified locations of the body in a study with physiological correlation.

The analyses in the tutorial were made with the R-package LMMstar which we have created
to make linear mixed models more readily applicable for the R-users among our students and
health science collaborators.

A similar tutorial is available for making analyses with SAS statistical software.

1.1 How to use this tutorial

The tutorial is intended to function as a self-learning text. You are encouraged to track the
analyses of the case study data while reading about them. To run the analyses you will need:

1. The R-packages LMMstar, lattice, and psych available from CRAN

2. The program file gastricbypass.R available with the tutorial.

If you want to view the case study data outside R or use a different software for analysis, you
can use the text file gastricbypass.txt.

1.2 How to report problems with R-package LMMstar

Unexpected behavior of the LMMstar package can be reported to:

https://github.com/bozenne/LMMstar/issues.

Please include a minimal reproducible example1 in your report, otherwise it is likely that we
will not be able to identify and solve the issue.

We do NOT provide support for other packages or R programming in general.
1https://stackoverflow.com/help/minimal-reproducible-example
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1.3 Cite us!

We have invested considerable time and effort in developing the LMMstar-package and the
tutorial. To support future updates, we kindly ask that you cite our work when you use it in
your research.

To cite the ’LMMstar’ package in publications use:

Brice Ozenne and Julie Forman (2022). LMMstar: Repeated
measurement models for discrete times. R package version
0.7.6.

To cite this tutorial use:

"Julie Forman and Brice Ozenne (2022): Introduction to linear mixed models for repeated
measurements data: Analysis of single group studies with R-package LMMstar. Lecture notes.
Faculty of Health Science. University of Copenhagen. URL https://absalon.ku.dk/
courses/47665".

Note that, as of this moment, the tutorial has not been formally peer-reviewed. We expect that
it will be revised in the future, but the core content should remain more or less the same.

1.4 Where to learn more

Lecture notes, exercises, and other material can be found at our course webpage:

https://absalon.ku.dk/courses/47665

If you want to learn more about longitudinal data analysis in general, a thorough introduc-
tion is given in the book Applied Longitudinal Analysis by Fitzmaurice, Laird & Ware (2012).
Students at the University of Copenhagen have free access to the e-version at the Royal Li-
brary. Please note that, even though the book describes SAS programing, supplementary R-
programs can be found at the book webpage: https://content.sph.harvard.edu/
fitzmaur/ala2e/

If you want to learn more about various mixed model analyses in R, a detailed account is
given in the book by Pinheiro & Bates (2006), who developed the nlme-package, Pinheiro
et al. (2019).

Before engaging in analysis of repeated measurements data, we strongly recommend that you
acquire basic R programming skills. An e-learning course, developed by associate professor
Susanne Rosthøj at the Section of Biostatistics, can be found at: http://r.sund.ku.dk/

5

https://absalon.ku.dk/courses/47665
https://absalon.ku.dk/courses/47665
https://absalon.ku.dk/courses/47665
https://content.sph.harvard.edu/fitzmaur/ala2e/
https://content.sph.harvard.edu/fitzmaur/ala2e/
http://r.sund.ku.dk/


2 Case: The gastric bypass study.

The gastric bypass study, Jorsal et al. (2020), was a small single group follow-up study in which
n = 20 obese subjects were followed prior to and after gastric bypass surgery.

Follow-up times: 3 months before surgery (baseline), 1 week before surgery, 1 week after
surgery, and 3 months after surgery (end of follow-up).

Outcomes: Gene-expressions from mucosal biopsies, gut hormones from blood samples, and
clinical data.

The primary aim of the study was to describe changes in the gut profile in response to the
treatment. For complete recording clinical outcomes were also analyzed. Please note that the
subjects underwent a diet in preparation for the surgery. Hence, genuine physiological changes
occurred already prior to surgery.

For simplicity, we will focus on two of the secondary outcomes from the study: bodyweight
(kg) and serum glucagon (a gut hormone). The latter was assessed by a mixed meal tolerance
test and summarized by total area under the curve (AUC, pmol/oz x minutes).

The motivation for picking these two particular outcomes is to highlight their statistical features
and their implications for analysis. The original study contained many more outcomes, some of
which were of greater scientific interest than the ones presented here.

Figure 1: Bodyweight (kg) and serum glucagon (AUC) of n = 20 obese subjects, recorded -3
months before, -1 week before, +1 week after, and +3 months after gastric bypass surgery.

The case study data is shown in figure 1. We note a decreasing trend in bodyweight throughout
the study, both in the individual subjects and in the population overall. Concerning glucagon,
surgery tend to increase levels in the population, but the long term effect is less pronounced than
the short term effect. On the individual level, the majority of the subjects seem to experience an
increase following surgery, but there are also subjects who experience a drop. Overall individual
glucagon levels are much less predictable than individual bodyweights. In statistical terms we
would say that the serial correlation in bodyweight is much stronger than in glucagon. The
tutorial contains a step-by-step analysis of the bodyweights. The corresponding analysis of
glucagon data is left as an exercise (see the course webpage for questions and solutions).

6



3 Single group studies in general

In this section we discus the statistical properties of single group studies in general.

3.1 What is a balanced single group study?

From a repeated measurements point of view, a balanced single group study is when we have:

1. A single sample of subjects from a population of interest,

2. Outcomes planned to be collected repeatedly for a common replication factor, e.g.

• Follow-up time in a follow-up study

• Treatment in a fixed sequence cross-over study.

• Location of the body in a study with physiological correlation)

Usually the aim of such a study is to evaluate the effect of the replication factor. E.g. when
we analyze the gastric bypass study, we aim to compare the outcomes between the different
follow-up times to see if systematic changes have occurred.

3.2 Note the difference: Balanced vs unbalanced design

A single group study is balanced when the replication factor is intentionally the same for all the
subjects in the study. It is important to notice that this is a property of the study design, not of
the data. When data is collected from a follow-up study, subjects are seldom assessed at the
exact same times. However, as long as the deviations from schedule are small and random this
has little consequence for statistics. Data may still be analyzed using the linear mixed model
described in this tutorial.

In contrary, unbalanced study designs occur when follow-up times vary between the individ-
ual subjects, e.g. in retrospective registry studies where follow-up was not planned but took
place according to the individual patients needs. Analyzing such data requires substantially
different modeling which is not described in this tutorial.

3.3 Note the difference: Complete vs incomplete data

Data is incomplete when some of the planned measurements are missing.

From a technical point of view incomplete data do not prevent analysis. Linear mixed models
may still be applied and are even optimal (in terms of statistical power) as long as the missing
data are missing at random, that is missing for harmless reasons (see lecture on missing data).

However, statistical results may be biased if data is missing for specific reasons that are related
to the outcome. E.g. if the most ill patients drop out of a follow-up study, those who remain
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no longer make up a representative sample from the original study population. Their outcomes
will leave an overly optimistic impression of how the well the population is faring. Therefore
potential causes for the missing data and their impact on the outcomes of the study should be
considered prior to analysis. If you have data that are missing for all but harmless reasons, we
recommend you consult with a statistician.

3.4 Choosing a statistical analysis: Linear mixed model or paired t-tests?

If your interest is to compare time points two by two in a single group follow-up study, then
you could also make the comparisons with the plain old paired t-test. The linear mixed model
and the paired t-tests will give you the same results if the data is complete and if the sample size
(number of subjects) is reasonably large.

If you have missing outcomes, the linear mixed model is optimal under a missing at random
assumption (see lecture on missing data), whereas the paired t-tests have less statistical power
and may be biased.

If you have complete data and a small sample size, the paired t-tests should be preferred since
this computes p-values and confidence intervals by exact formula while numerical approxima-
tion in the linear mixed model analysis may lead to less accurate results (see sections 6.9–6.10).

If you have both a small sample size and missing data, then consult with a statistician.

4 Preparing data for analysis

A trimmed version of the original records from the gastric bypass study are contained in the
dataset gastricbypassW in the LMMstar-package. It contains the following variables:

Variable Contents
id Pseudo-ID (anonymized).
weight1-4 Bodyweight in kg at 1st, 2nd, 3rd, and 4th follow-up.
glucagonAUC1-4 Total AUC for glucagon at 1st, 2nd, 3rd, and 4th follow-up.

4.1 Load the case study data

To get a quick start on learning linear mixed model analyses, load the data with:

# Load the LMMstar-package:
library(LMMstar)

# Load the case study data (wide format)
data("gastricbypassW")

For smoother programming we make a copy of the data with the shorter name wide:
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wide <- gastricbypassW

If you prefer to read data from the external file gastricbypass.txt, see appendix A.

4.2 Inspecting the data in R

Once you have managed to load the case study data in R, you should be able to locate the
dataframe wide in the workspace. If you are running R Studio, look for the name wide in the
Environment window.

To summarize the contents of the data, we use the command:

str(wide)

which results in:

’data.frame’: 20 obs. of 9 variables:
$ id : Factor w/ 20 levels "1","2","3",..: 1 2 3 ...
$ weight1 : num 127 165 110 146 113 ...
$ weight2 : num 121 153 102 142 106 ...
$ weight3 : num 115.5 149.2 97.7 136.7 99.9 ...
$ weight4 : num 108.1 132 87.1 123 87.7 ...
$ glucagonAUC1: num 5032 12142 10321 6693 7090 ...
$ glucagonAUC2: num 4942 14084 6202 6632 NA ...
$ glucagonAUC3: num 20421 10946 20121 13090 19155 ...
$ glucagonAUC4: num 9249 7612 17705 4551 12345 ...

This tells us that the dataframe wide contains nine variables and 20 records, the names of the
variables, their data types, and some of the recorded values.

The outcomes are described as num, meaning that R regards them as continuous, numerical
variables, where as id is described as Factor which means that R regards it as a categorical
variable.

4.3 Numerical and categorical variables in R

Please note that id is numbered 1, 2, 3,. . . merely for convenience. It is not so that subject
number four is twice as much of a person as subject number two, and we won’t get subject six
by adding the two!

If you have chosen to load the data from gastricbypass.txt (appendix A), R will mistake
id for a numerical variable unless you change its format to categorical with the factor-
function:

wide$id <- factor(wide$id)
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4.4 The long and the wide data format

In order to perform linear mixed model analyses it is important to distinguish two different
formats for the same data.

1. The wide format with one record (dataline) per subject.

2. The long format with several records (datalines) per subject, one for each occasion.

The dataframe wide is in the wide format. This is the natural format when collecting data from
a balanced study; It is compact and makes it easy to compare measurements from the same
subject between occasions. E.g the records from id=2 and id=3 in the wide data reads:

id weight1 weight2 weight3 weight4 glucagonAUC1 . . . glucagonAUC4
2 165.2 153.4 149.2 132.0 12142.50 . . . 7612.50
3 109.7 101.6 97.7 87.1 10321.35 . . . 17704.50

From this we see that id=2 had an initial weight of 165.2 kg which had dropped to 132.0 kg at
end of study. Moreover, glucagon AUC decreased from baseline to end of study in this subject.
Similarly id=3 had an initial bodyweight of 109.7 kg which decreased to 87.1 kg, while at the
same time glucagon AUC increased in this subject.

To perform a mixed model analysis data must be structured in the long format where each
measurement appear in separate lines in the dataset and an additional variable identifies the
occasion. E.g. in the gastric bypass study id=2 contributes four records:

id visit time weight glucagonAUC
2 1 -3 month 165.2 12142.5
2 2 -1 week 153.4 14083.5
2 3 +1 week 149.2 10945.5
2 4 +3 month 132.0 7612.5

Here the same id-number is repeated four-fold because it does not change between occasions. In
contrast, the outcome variables weight and glucagonAUC vary between occasions. More-
over, note that only two variables are needed to contain the outcomes in the long data, while
eight were needed in the wide data.

4.5 R-program: Transforming data from the wide to the long format

Fortunately we do not have to rearrange data manually to make a long version that can be used
in the mixed model analyses. This R code transforms the wide data and stores it in a new
dataframe called long:
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# Reshape data from wide to long format

long <- reshape(wide,
direction="long",
idvar="id",
varying=list(
c("weight1","weight2","’weight3","weight4"),
c("glucagonAUC1", "glucagonAUC2", "glucagonAUC3", "glucagonAUC4")
),

v.names=c("weigh"’,"glucagonAUC"),
timevar="visit")

Here the idvar argument indicates the variable identifying the subjects. In the long data,
this will be used to link the multiple records from the same person. The varying argument
should contain the names of the variables containing the repeated measurements in the wide
data. Here we input a list because we have two different outcomes (weight and glucagon). Each
element of the list names the repeated measurements for a particular outcome. The argument
v.names is used to name the columns in the long data corresponding to the two outcomes.
The argument timevar names the replication factor in the long data. It is important to notice
that R automatically numbers the replicates as 1, 2, 3, so if you want different names or numbers
you have to change them afterwards. Here we add the categorical variable time to the data:

# Add a categorical version of the follow-up time variable to the data:

time.names <- c("-3 month","-1 week","+1 week","+3 month")
long$time <- factor(long$visit, labels=time.names)

Please check the contents of the long dataset, e.g. by opening it from the Environment window
in R Studio. Make sure to notice the differences compared to the wide data format.

If you have problems running the above code, you can make a shortcut by loading the long data
directly from the LMMstar-package:

# Load the case study data in long format
data("gastricbypassL")
long <- gastricbypassL

4.6 Why have a categorical and a numerical version of the time variable?

Now our long data contains two different variables describing the same follow-up times:

• visit is a numerical variable which numbers follow-up times as 1,2,....

• time is a categorical variable which labels follow-up times as "-3 month", "-1
week", "+1 week", and "+3 month".

Keeping both versions is convenient as R often treats categorical and numerical variables dif-
ferently. This goes for instance for graphical functions.
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5 Descriptive statistics

Before we proceed to making statistical analyses, we will discus descriptive statistics suitable
for single group studies. The graphical displays will help us not only to spot erroneous mea-
surements that could otherwise bias the analyses, but also to make assessments of the trends in
the data which will help us interpret the output from the linear mixed model analyses. Finally
the descriptive statistics will help us judge whether data is approximately normally distributed
or it should be transformed to better fulfill model assumptions.

Some of the descriptive statistics contained in this section are vital for the mixed model analyses.
They will help you to correct errors in your R code as well as in your data. Others are mainly
included for pedagogical reasons to help you become familiar with repeated measurements data
and the multivariate normal distribution in general.

5.1 Spaghettiplots

We recommend to never analyze repeated measurements without making spaghettiplots. The
spaghettiplot is the most informative descriptive figure for repeated measurements, since it
shows the data in full detail. From this you can get an impression of both individual outcomes
and the distribution across the sample. Once you get accustomed to the plot, you will be able to
identify all of the most important features of your data:

• Trend.

• Variability.

• Skewness.

• Outliers.

• Serial correlation (aka tracking effect).

Spaghettiplots can be made for instance with the xyplot-function in the lattice-package.

library(lattice)
xyplot(weight~time, data=long, group=id, type="b")

Note that xyplotmust be applied to data which is in the long format. The argument group=id
connects the outcomes belonging to the same id. The argument type="b" implies that both
lines and markers are drawn, while type="l" means lines only. Additional options can be
supplied to alter the appearance of the plot, but usually the defaults are sufficient to get an
impression of the data.
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In figure 2 below we immediately notice a decreasing trend in bodyweight, both in the individ-
uals and in the sample as a whole. Variability seems to be roughly the same at each follow-up.
Moreover, we see that the distribution of the bodyweights is somewhat skewed with a few ex-
tremely heavy subjects, a majority of moderately heavy subjects, and no normal weight subjects.

Figure 2: Spaghettiplot of bodyweights from the gastric bypass study made with xyplot.

Finally, we note a strong tracking effect, meaning that subjects rarely change positions. The
heaviest subject at baseline is the heaviest throughout the study and similarly with the lightest
subject. This tells us that that the serial correlation is strong, which also makes sense from a
biological point of view. Bodyweights do not change dramatically from day to day, they are
highly predictable over short time durations.

5.2 Scatterplot matrices

If you want to get a more familiar picture of how strong the correlation is between your repeated
measurements and whether they are multivariate normal distributed, you can make scatterplot
matrices with the plot-function. Please note that this applies to data in the wide format.

# Extract replicate outcomes to simplify code:
weight.replicates <- wide[,c(’weight1’,’weight2’,’weight3’,’weight4’)]

# Simple scatterplot matrices:
plot(weight.replicates)
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When interpreting the scatterplots (figure 3 below), you should look for the elliptical shape that
characterizes the multivariate normal distribution.

Figure 3: Scatterplot matrices of weights from the gastric bypass study made with plot

The scatterplot matrix confirms the strong correlation we already noted in the spaghettiplot.
Also we confirm that the distribution of the weights at each separate follow-up time is skewed,
albeit not dramatically so. The skew trend seems to be mainly driven by one or two outlying
subjects. However, we know that bodyweight has a skew distribution in the general population,
so this is likely a genuine finding.

A more informative scatterplot matrix with superimposed normal distributions and including the
estimated correlations can be made with the pairs.panels function in the psych-package:

# Scatterplot matrices with effects (psych-package):
library(psych)
pairs.panels(weight.replicates, ellipses=TRUE, smooth=FALSE)

We use ellipses=TRUE to add correlation ellipses to the plot and smooth=FALSE to omit
smoothed trends (like in a regression), which would otherwise disturb the picture.
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Figure 4: Scatterplot matrices of weights from the gastric bypass study made with
pairs.panels

5.3 Is data normally distributed - and does it matter?

The problem with normality is not different between linear mixed models and ordinary linear
models. If the sample size (number of subjects) is tiny, the assumption that data is normally dis-
tributed is crucial but impossible to verify. This is why small sample size is always a limitation.

If sample size is large, on the other hand, the statistical results are robust to all but substantial
skewnes and extreme outliers. This means that estimates, confidence intervals, and p-values are
statistically valid regardless of deviations from the normal distribution. However, one should be
a little cautious when interpreting estimated mean differences as the mean doesn’t necessarily
describe the most typical outcome in the population.

If the data deviates substantially from the normal distribution, you can try to improve the fit by
applying a transformation, e.g. a logarithm. Further considerations on transformation are given
in appendix D. See in addition sections 6.9–6.10 for considerations on sample size.
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5.4 Trends in summary statistics over time

Summary statistics for the various follow-up times can be computed with the summarize-
function in LMMstar. Default output is number of non-missing and missing observations,
mean, standard deviation, median, quartiles, and ranges (minimum and maximum):

# Summary statistics:
w.summaries <- summarize(weight~time, data=long, na.rm=TRUE)
print(w.summaries, digits=4)

outcome time observed missing mean sd min median max
1 weight -3 month 20 0 129.0 20.27 100.9 123.1 173.0
2 weight -1 week 20 0 121.2 18.91 95.7 114.5 162.2
3 weight +1 week 20 0 115.7 18.28 89.9 110.6 155.0
4 weight +3 month 20 0 102.4 17.05 78.8 98.5 148.0

The sample means confirm the decreasing trend we saw in the spaghettiplot. What was less ob-
vious from the plot, is that the standard deviations also decrease over time. Usually decreasing
variability with decreasing level suggest a logarithmic transformation, but note that the linear
mixed model used in the analysis do not assume that the variance is homogeneous. Hence, vari-
ance heterogeneity is not a model deviation. The medians are, however, consistently smaller
than the means, which confirms the skewness we saw in the plots, and this is a model violation,
albeit a fairly harmles one.

We can use the xyplot-function to plot the sample means and standard deviations over time:

# Plot trends in summary statistics:
xyplot(mean~time, data=w.summaries, type="b")
xyplot(sd~time, data=w.summaries, type="b")

Figure 5: Trends in sample means and standard deviations from the gastric bypass study.
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6 About linear mixed models

In this section we introduce linear mixed models and discus their statistical properties. We have
attempted to make the descriptions as non-technical as possible, explaining the theory in words
and pictures as well as in formulae. However, statistics rely on mathematical foundations,
so formulae cannot be avoided completely. The most technical subsections are marked with
? and can be skipped by non-mathematician readers. The philosophy of this tutorial is that
full technical understanding of the linear mixed models is not needed to apply the models in
practice. If you prefer a mathematically rigorous introduction we refer to Fitzmaurice, Laird &
Ware (2012) and Pinheiro & Bates (2006)

6.1 What is a linear mixed model?

A linear mixed model is a multivariate normal model for repeated measurements including to
distinct set of parameters.

1. Mean parameters describing trends in the population, usually expressed in terms of re-
gression coefficients for covariates.

2. Covariance parameters, describing variance and correlation in the population.

The first part implies that interpreting results from linear mixed model analyses is easy if you
are familiar with ordinary linear models for independent data.

The extra challenge that comes with a linear mixed model analysis is to choose a suitable model
for the covariance. Overall we have three different ways of doing this:

• Direct specification of a covariance pattern (lmm- or gls-functions in R).

• Indirect specification via random effects (lme- or lmer-functions in R).

• A combination of the two (possible in SAS, but not in R).

We will introduce the different types of models on a case to case basis in our lectures and
exercise classes, starting with the unstructured covariance pattern in section 6.5 below.

It should be noted that although some overlap exist between the three classes of models, differ-
ent specifications of the covariance in general will give rise to substantially different statistical
results.

Although the covariance parameters are rarely of an interest of their own, modeling the covari-
ance correctly is important for making statistical conclusions. If the covariance is misspecified,
the standard errors for the mean parameters may be biased, meaning that you get confidence
intervals that are too narrow or too wide and p-values that are smaller or larger than they ought
to be. In case there are missing data, misspecification of the covariance pattern may also inflict
bias in the estimates for the mean parameters.
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6.2 Describing linear mixed models in research papers

When describing a particular linear mixed model in the statistical methods section of a research
paper it is important that you specify not only which covariates (fixed effects) entered the model,
but also what model you chose for the covariance.

A description of the model for the case study would be something like this:

Case: To analyze changes in bodyweight over time we applied a linear mixed model including
follow-up time (categorical) as a fixed effect. To account for the correlation in the repeated
measurements as well as possible variance heterogeneity over time, we assumed an unstructured
covariance pattern.

The model for the case study is described in further detail in sections 6.4 and 6.5 below.

6.3 The linear mixed model described in formulae?

To get a good understanding of linear mixed models, you need to know the basic formula
defining the models and the terminology related to them. Phrased in mathematical terms, we
describe repeated measurements on subjects i = 1, . . . ,n over occasions j = 1, . . . ,k as:

Yi j = β1Xi j1 + . . .+βimXi jm + εi j

where Xi j1, . . . ,Xi jm are the covariates for subject i at occasion j, β1, . . . ,βm are the regression
parameters. The first covariate in the formula, Xi j1, will often be a constant equal to 1, so that
the corresponding regression parameter β1 is an intercept.

The covariates in a linear mixed model are referred to as fixed effects.

The error terms in the formula, εi1, . . . ,εik, are assumed to follow a multivariate normal distri-
bution with zero mean. In statistical theory, the correlation between them is implicitly modeled
in the k× k dimensional residual covariance matrix:

Σ =

 σ2
1 . . . σ1k
... . . . ...

σk1 . . . σ2
k


which is a mathematically convenient way of reporting variances and correlations in a compact
manner. For interpretation we prefer looking at standard deviations and correlations. These can
be recovered from the covariance matrix by use of the formulae:

σ j =
√

σ2
j and ρ jl =

σ jl

σ jσl

However, in practice you get the standard deviation and correlation as default output when
analyzing linear mixed models with the LMMstar-package, so you need not worry all that
much about covariances.

In the statistical literature, the covariance matrix is sometimes referred to as the R matrix. This
should not be confused with the software.
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6.4 Case: Oneway ANOVA-like linear mixed model

To model changes in mean bodyweight over time, we specify a linear mixed model with follow-
up time as a categorical covariate (fixed effect). This is similar to a oneway ANOVA model for
independent data where we have a separate mean parameter for each follow-up time.

However, when we analyse data in R, the default model specification (section 7.1) will give us
estimates of the difference in means with respect to a reference time point (usually baseline).
I.e. the default model parameters are the regression parameters β1,β2,β3,β4 that describes the
mean bodyweight in the population over time as in the following table:

Time Population mean Estimated mean
-3 months µ1 = β1 128.97
-1 week µ2 = β1 +β2 121.24 = 128.97 - 7.73
+1 week µ3 = β1 +β3 115.70 = 128.97 - 13.27
+3 months µ4 = β1 +β4 102.37 = 128.97 - 26.605

Table 1: Population means (µ1,µ2,µ3,µ4) over time and corresponding estimates in the gastric
bypass study. Changes in mean since baseline are described by the regression parameters β2,
β3, and β4. The intercept parameter β1 is the mean at baseline. Estimates were obtained from
the R-output in section 7.4. The regression parameters are further illustated in figure 6 below.

Figure 6: Graphical display of the estimated means over time (black curve) and regression
coefficients (colored arrows) in the gastic bypass study.

Note that it is possible to choose a different reference point than baseline. This way we can
estimate differences in means between any two follow-up times. Also it is possible to estimate
the mean parameters µ1, µ2, µ3 and µ4 instead of the regression parameters β1, β2, β3, and β4.
Check the R syntax in section 7.5 to learn how to do this.
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6.5 The unstructured covariance pattern

Specifying a model for the covariance is easy when it comes to balanced single group studies.
We can assume an unstructured covariance pattern, which models variances and correlations
without any restrictions. This is a great advantage as the covariance can never become misspec-
ified.

With repeated measurements over k occasions, the unstructured covariance pattern has:

• k variance parameters, denoted σ2
1 , . . . , σ2

k .

• k(k−1)/2 correlation parameters denoted ρ12, . . . ,ρk−1,k.

In the case study with k = 4 follow-up times, we have 4 district variances and 6 distinct corre-
lations, leading to the following R covariance matrix:

ΣUN =


σ2

1 σ1σ2ρ1,2 σ1σ3ρ1,3 σ1σ4ρ1,4
σ1σ2ρ1,2 σ2

2 σ2σ3ρ2,3 σ2σ4ρ2,4
σ1σ3ρ1,3 σ2σ3ρ2,3 σ2

3 σ3σ4ρ3,4
σ1σ4ρ1,4 σ2σ4ρ2,4 σ3σ4ρ3,4 σ2

4


with estimated standard deviations (σ̂1, σ̂2, σ̂3, σ̂4) = (20.27,18.91,18.28,17.05) and estimated
correlations (ρ̂1,2, ρ̂1,3, ρ̂1,4, ρ̂2,3, ρ̂2,4, ρ̂3,4) = (0.990,0.986,0.946,0.997,0.959,0.966).

We recommend that you specify your linear mixed model with an unstructured covariance pat-
tern whenever possible, since it guarantees that you do not make any wrong model assumptions
concerning the covariance. Unfortunately the unstructured covariance pattern cannot be applied
when the number of follow-up times exceed the number of subjects in the sample. Nor can it
be used and when the study design is unbalanced.

6.6 Random effect of subject vs unstructured covariance

Having an unstructured covariance pattern is preferable to having a more restrictive covariance
pattern as we have argued in the previous section. Nevertheless, many health science researchers
handle repeated measurements by using a different type of linear mixed model, namely one with
a random effect of subject. This is unfortunate as the random effect gives rise to very restrictive
assumptions about the variances and correlations.

The assumed R covariance matrix would be a so-called compound symmetry pattern:

ΣCS =


σ2 σ2ρ σ2ρ σ2ρ

σ2ρ σ2 σ2ρ σ2ρ

σ2ρ σ2ρ2 σ2 σ2ρ

σ2ρ σ2ρ2 σ2ρ σ2


In the case study with estimated standard deviation σ̂ = 18.66 common to all occasions and
estimated correlation ρ̂ = 0.970 between any two occasions (see appendix B for R-code and
output).
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In other words, by modeling correlation by having a random effect of subject (compound sym-
metry pattern) in your linear mixed model, you assume that both variances and correlations are
constant over time. This is most often not a realistic assumption.

Covariance patterns and random effects models are further discussed in lectures 2 and 3.

6.7 Maximum likelihood estimation?

This section contains a short and mostly intuitive description of what is actually a delicate matter
for mathematical statisticians.

To assess what parameters fit the data well, we use the likelihood function. In a linear mixed
model this is the multivariate normal probability density.

L(µ,Σ) =
n

∏
i=1

(
1√

(2π)k|Σ|
e−

1
2 (yi−µ)T Σ−1(yi−µ)

)
(1)

The product is taken over subjects i = 1, . . . ,n (assumed independent so that their probability
densities can be multiplied). Here yi is the k-dimensional vector observation for subject i, µ is
the mean vector, Σ is the residual covariance matrix, Σ−1 its inverse, and |Σ| its determinant. If
you are not familiar with matrix computation, think of the univariate normal density instead.

The key idea in maximum likelihood estimation is as follows:

• We assume that the k-dimensional outcomes y1, . . . ,yn have been sampled from a k-
dimensional multivariate normal distribution with population mean µ and population co-
variance matrix Σ.

• If we knew the true population parameters µ and Σ, then the likelihood function, i.e. the
probability density (1), would tell us which outcomes were more or less likely. In a normal
distribution the most likely outcomes are close to the population mean where the density
attains its maximum value. With increasing distance from the mean, the likelihood values
decrease and outcome values become correspondingly rare.

• In practice, we do not know what the true population parameters are, but we do know
a bunch of likely outcomes, namely our data, y1, . . . ,yn. Hence we use the likelihood
function (1) to determine which parameters would make the observed outcomes most
likely.

This is the likelihood principle which states that the parameters that fit the data the best are the
ones which have the highest likelihood values i.e. the maximum likelihood estimates.

To make matters even more complicated, the parameters of linear mixed models are usually
estimated by use of a variant of the likelihood function called the restricted likelihood function,
see e.g. Fitzmaurice, Laird & Ware (2012)). This is because the restricted likelihood estimates
of the covariance parameters are more accurate in small samples. Therefore restricted maximum
likelihood (abbreviated REML) is the default estimation method in most software including the
LMMstar-package.
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Case: The restricted maximum likelihood estimates from a balanced single group study with
complete data are the sample means, the sample SDs, and the sample correlations,

µ̂1 = 129.0, µ̂2 = 121.2, µ̂3 = 115.7, µ̂4 = 102.4,
σ̂1 = 20.3, σ̂2 = 18.9, σ̂3 = 18.3, σ̂4 = 17.1,
ρ̂12 = 0.990, ρ̂13 = 0.986, ρ̂14 = 0.946, ρ̂23 = 0.997, ρ̂24 = 0.959, ρ̂34 = 0.966.

These are identical to the summary statistics from section 5.

6.8 Numerical optimisation and convergence?

An important difference between linear mixed models and ordinary linear models is that in
linear mixed models the estimates and standard errors cannot in general be computed using
textbook formula. Balanced single group studies with complete data are an exception to this
rule, but software packages will ignore this fact when analysing a particular data set. Instead
they use numerical optimisation to approximate the maximum likelihood estimates.

To give you a rough impression of how numerical optimisation works, we will briefly describe
what lmm and other software for linear mixed models does. Again, this is a simplified descrip-
tion of a rather complex technical matter.

For ease of computation the numerical optimisation operates on the deviance function which is
-2 times the natural logarithm of the likelihood function (1), i.e.

deviance(µ,Σ) = k ·n · log(2π)+n · log |Σ|+
n

∑
i=1

(yi−µ)T
Σ
−1(yi−µ) (2)

Higher values of likelihood correspond to lower values of deviance. Hence the maximum of the
likelihood function is the same as the minimum of the deviance function.

In practice, the deviance (2) is usually replaced by the deviance of the restricted likelihood
function, see e.g. Fitzmaurice, Laird & Ware (2012) for details.

This is how the numerical optimisation works:

1. lmm initially makes a qualified guess of what the estimates could be.

• Mean parameters are initially estimated as if data was independent (i.e. using model
formulae for the ordinary linear model, like with the lm-function).

• Covariance parameters are estimated using more complicated computations that are
specific to the particular covariance pattern, see Pinheiro & Bates (2006) for details.

2. Goodness of fit between the candidate estimates and the data is evaluated by the deviance
function. Lower values of deviance are better (they correspond to higher likelihood).

3. R computes the gradient (i.e. the multivariate first order derivative) and the Hessian (i.e.
the multivariate second order derivative) of the deviance function to move the candidate
estimates in a direction where the deviance will be smaller (and the likelihood higher).
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4. Steps 2-3 are iterated until the candidate is within a certain tolerance of the maximum
likelihood estimates (in the sense that the gradient is close to zero), or until the number
of iterations reach an upper limit set to avoid that the program runs forever.

We say that the numerical optimisation has converged, if it stops when it has located the maxi-
mum likelihood estimates. Section 7.2 describes how to assess convergence in practice.

6.9 Inference: Confidence intervals and hypothesis testing?

Recall that 95% confidence intervals in linear models are computed from the formula:

β̂ ± t0.975(df)× s.e.(β̂ )
estimate ± roughly 2× standard error

where t0.975(df) is formally the 97.5% quantile in a t-distribution with model specific denomi-
nator degrees of freedom (df). Likewise the hypothesis H0 : β = 0 can be tested using a t-type
test statistic:

t =
β̂

s.e.(β̂ )
which is compared to the t-distribution with df degrees of freedom.

The trouble with linear mixed models is that there are no simple general formula to compute the
degrees of freedom. As sample size becomes large t0.975(ddf) ≈ 1.96. Otherwise the residual
degrees of freedom that are used for t-tests and corresponding confidence intervals can only be
computed exactly for some very specific balanced study designs when the data is also complete.
In any other instance, degrees of freedom must be approximated using more of less complex
computations.

The most recent method for approximating denominator degrees of freedom in linear mixed
models is due to Kenward & Roger (2009). This has been implemented in PROC MIXED
in SAS and in the pbkrtest-package in R, whereas the LMMstar-package relies on the
Satterthwaite approximation, see e.g. Hrong-Tai Fai & Cornelius (1996). It is important to
notice that a poor approximation of the denominator degrees of freedom may lead to biased
inference in small samples, namely confidence intervals that are too narrow and p-values that
are too small.

Case: The table below contains 95% confidence intervals for the mean weight change from
baseline (-3 months) to final follow-up (+3 months) using approximate degrees of freedom
from the gls-function in the nlme-package in R, the lmm-function in the LMMstar-package
in R, and PROC MIXED in SAS, respectively. As benchmark we have used the exact 95%
confidence interval for the paired t-test.

Denominator degrees 95% CI for Width relative
of freedom method the mean change to reference
No correction (gls-function in R) -26.6050 (-29.6892;-23.5207) 0.9511
Satterthwaite (lmm-function in R) -26.6050 (-29.8483;-23.3617) 1.0001
Kenward & Roger (2009) (SAS) -26.6050 (-29.8479;-23.3621) 1.0000
Exact 95% CI (paired t-test) -26.6050 (-29.8479;-23.3621) Reference
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In this case the approximate 95% confidence interval we get from PROC MIXED in SAS is
spot on and lmm is very close to it, while gls underestimates the width by 5%. Note that this
is solely due to a poor approximation to the degrees of freedom. The estimate and the standard
error for the mean change will always agree between the linear mixed model and the paired
t-test when:

1. The study design is balanced

2. The data is complete

3. The covariance is modeled by an unstructured pattern.

Also under these conditions we get a theoretical expression of the worst case attenuation factor
occuring when gls computes the degrees of freedom as if the repeated measurements were
independent data:

width of confidence interval from gls

width of correct confidence interval
=

t0.975((n−1)∗ k)
t0.975((n−1)

where t0.975(df) the 97.5% quantile in a t-distribution with df degrees of freedom, n is the
number of subjects and k is the number of replicates.

In the specific example with n = 20 and k = 4, we can verify the attenuation factor:

qt(0.975, df=(20-1)*4) / qt(0.975, df=20-1)

[1] 0.9515766

6.10 Important: Sample size matters!

Confidence intervals and p-values in linear mixed models are all based on statistical large sam-
ple theory. Hence, you need to consider sample size (number of subjects) to assess whether
your statistical results are valid.

When is sample size large enough? As usual, there is no strict answer to this question. Indeed
if deviations from the normal distribution are severe (e.g. if extreme outliers are present), if the
number of replicates is large, or if correlations are extremely close to -1 or 1, then statistical
results may be compromised even in larger samples. However, years of working with linear
mixed models have left us with the following experience:

Sample size Impact of normal distribution Impact of degrees of freedom
Tiny n < 10 Linear mixed model analysis disrecommended??

Borderline 10≤ n < 15 Normal distribution matters Large impact
Small 15≤ n < 30 Moderate deviations tolerable Moderate impact
Moderate 30≤ n < 60 Larger deviations tolerable Small impact
Large n≥ 60 Most deviations tolerable Hardly any impact.
?? We suggest you use t-tests or non-parametric statistics instead.
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Please note that these recommendations are for balanced designs with complete data. In case
some of the outcomes are missing, the effective sample size will be smaller than the number of
subjects in the sample. The number of complete cases (subjects with complete data) is a lower
bound for the effective sample size.

Also note that when several groups are considered, n is the number of subjects per group.

6.11 Predicted values and residuals

Predicted values and residuals are useful for model validation. We can make residual plots
and QQ-plots similar to those for ordinary linear models to evaluate a linear mixed model.
However, linear mixed models are more complex and for this reason we use several different
types of predicted values and residuals to check different aspects of the model specification.

Three different kinds of predicted values can be considered:

1. Ordinary predicted values (based on covariates).

2. Dynamical predictions (based on covariates and previous observations).

3. Subject specific predictions (for random effects models, see lecture 3).

The ordinary predicted values are what we get from the estimated linear model:

Predicted value for subject i at occasion j : Ŷi j = β̂1Xi j1 + . . .+ β̂mXi jm

These are similar to predicted values from an ordinary linear model. We recommend using
the predicted values for an initial check of your model specification (see section 7.6). If your
predicted values deviate substantially from the trends in the descriptive statistics, you have
likely made an error in your R code or a poor choice of model.

The (ordinary) residuals are obtained by subtracting predicted values from observed:

Residual for subject i at occasion j : ei j = Yi j− Ŷi j

These are similar to the residuals from an ordinary linear models. Only residuals belonging
to the same subject will be correlated and they may have different standard deviations even if
the model is correctly specified. E.g. the unstructured covariance pattern (section 6.5) assumes
potentially different standard deviations for the different occasions.

The residuals allows you to make diagnostics plots that are better for checking normality than
the simple scatterplots in section 5. However, since standard deviations from different occasions
may differ in a mixed model, we cannot pool the ordinary residuals in a QQ-plot to check
that they are normally distributed without first standardizing them. Similar to ordinary linear
models, residuals may be standardized in two different ways:

• Pearson residuals have been standardized by dividing with the estimated standard devia-
tions from each occasion in turn. The resulting residuals have similar standard deviations
but are still correlated across occasions.
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• Studentized residuals are leave-one-out versions of the Pearson residuals making it eas-
ier to detect influential outliers.

Dynamical predictions are what we get from predicting outcomes based on covariates and pre-
vious outcomes in conjecture. A mathematical property of the multivariate normal distribution
is that it implies a linear model for either outcome with any other as predictor, i.e.

Yi j = β1Xi j1 + . . .+βmXi jm + γ1Yi1 + . . .+ γ j−1Yi j−1 + error (3)

We will explain this in terms of two repeated measurements, Y1 and Y2, highlighting the con-
nection between correlation and prediction. See figure 7 for illustration.

Figure 7: Dynamical prediction of the second bodyweight from the first bodyweight in the
gastric bypass study. The strong correlation implies that the predictive accuracy is high.

Assuming that Y1 and Y2 follow a joint normal distribution with mean µ1 and µ2, standard devi-
ations σ1 and σ2 and correlation ρ , then we have the following linear regression for predicting
Y2 based on Y1 :

Yi2 = γ0 + γ1 ·Yi1 + ε
Y2|Y1
i (4)

where the εY2|Y1s are prediction errors following a normal distribution with zero mean and vari-
ance σ2

2|1, called the prediction error variance.

The intercept, the slope, and the prediction error variance are determined by the parameters in
the multivariate normal distribution:

γ0 = µ2−ρ
σ2

σ1
µ1, γ1 = ρ

σ2

σ1
, and σ

2
2|1 = (1−ρ

2)σ2
2 (5)

We note that the slope γ1 = ρ
σ2
σ1

has the interpretation that the predicted values of Y2 increases
with ρ standard deviations every time the predictor Y1 increases with one standard deviation.
Moreover, we see that the prediction error variance decreases as the correlation gets stronger.
In other words, Y2 is more accurately predicted from Y1 if the correlation is strong. This is in
good accordance with our understanding of the correlation.
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From the prediction models we obtain residuals that are estimates of the dynamical prediction
errors. These can be used for further validation of the linear mixed model. A noteworthy
result from mathematical statistical theory is that the prediction errors are independent of each
other. Hence, if the linear mixed model is correctly specified the standardized residuals from
the dynamical prediction models should be approximately independent and normally distributed
with zero mean and a standard deviation of one. The standardized dynamical residuals are called
scaled residuals in the LMMstar-package to mimic PROC MIXED in SAS.

Case: Figure 8 illustrates the different residuals obtained from the gastric bypass study.

Figure 8: Residuals from fitting the linear mixed model to the bodyweights from the gastric by-
pass study. From upper left to lower right panel the plots are: Original data, ordinary residuals,
studentized residuals, and scaled residuals. Pearson residuals have been omitted since they are
practically indistinguishable from the studentized residuals.

Assuming that data is truly multivariate normal distributed all residuals should be symmetrically
distributed around zero. Further the standardized residuals (Pearson, studentized and scaled)
should have a homogeneous variance across occasions. The tracking effect from the original
data persist in all but the scaled residuals, which ought to be uncorrelated if all the assumptions
for the linear mixed model hold true.
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For a worked example, we will take a closer look at the predicted values and residuals for id=2:

id visit weight predicted Residual PearsonRes StudentizedRes ScaledRes
2 1 165.2 128.97 36.23 1.79 1.83 1.79
2 2 153.4 121.24 32.16 1.70 1.74 -0.47
2 3 149.2 115.70 33.50 1.83 1.88 1.88
2 4 132.0 102.36 29.64 1.74 1.78 -0.46

As for all subjects, the (ordinary) predicted values are equal to the estimated means from the
separate occasions, which again are equal to the sample means because the data is complete.
The (ordinary) residuals are the differences between the observed weights and the predicted
values, e.g.

ei1 = Yi1− µ̂1 = 165.2−128.97 = 36.23.

This shows that id=2 had an initial weight which is 36.2 kg above the estimated population
mean. We get the Pearson residual by dividing with the estimated standard deviation, that is

ei1

σ̂1
=

36.23
20.27

= 1.79

showing that id=2 had an initial weight which is 1.79 standard deviations above the estimated
population mean. The subsequent Pearson residuals show that id=2 remains about 1.7 to 1.8
standard deviations above the estimated population mean throughout the study, which makes
good sense considering the strong serial correlation in the bodyweights.

The Studentized residuals are highly similar to the Pearson residuals, only slightly larger.

As to the scaled residuals, the first is identical to the Pearson residual (since we have no previous
weights to predict from at baseline). At the second visit, we predict the second weight from the
first using the linear regression model in figure 7 and we compute the prediction error:

Ŷ |Y1
i2 = 154.7 e|Y1

i2 = Yi2− Ŷ |Y1
i2 ' 153.40−154.69 =−1.29

We next standardize this by dividing with the estimated standard deviation of the prediction
error distribution, −1.29

2.78 =−0.47. We note that the scaled residual is negative since the second
observed weight of id=2 is smaller than what the model predicts from his initial weight. How-
ever, the deviation from the prediction is not unusually large, it is only about one half standard
deviation of the prediction error distribution. The third scaled residual is 1.88. Thus a visit 3,
id=2 had a higher weight than what the model predicts from his two previous weights. The
deviation is fairly large but still within the normal range ±2. At the final visit, id=2 had a
weight which is smaller than what the model predicts from the three previous weights, but well
within the normal range of the estimated prediction error distribution.

The different kinds of residuals and their use for making model diagnostics are further described
in chapter 10 of Fitzmaurice, Laird & Ware (2012). Predicted values and residuals from the case
study are further investigated in section 7.6.
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7 Analysis and interpretation of the linear mixed model

In the following section we will describe how to analyze the gastric bypass data using the lmm-
function in the LMMstar-package in R. We will describe the the R-code and the interpretation
of the output.

7.1 R program: Specifying the linear mixed model

To make a linear mixed model analysis of the gastric bypass data, we first set the reference point
for the categorical covariate time. This will be the intercept in the linear mixed model.

# Set reference point (intercept) for time factor:
long$time <- relevel(long$time, ref="-3 month")

In this case we have chosen baseline as the reference point. Please note that you can switch to
another follow-up time if you want to compare with that instead.

To do the linear mixed model analysis we need to use the lmm-function which is found in the
LMMstar-package. Once we have loaded the package, we use lmm to specify a model object.

### Main analysis of changes in mean since baseline ####
fit.main <- lmm(weight~time,

repetition=~visit|id,
structure="UN",
data=long)

As to the essential parts of the code:

• The model formula, weight∼time, specifies which variable is the outcome (left of ∼)
and which is the covariate (right of ∼). It is possible to have more than one covariate
in a mixed model, but in this case we only have only one, namely time which is a
categorical variable (a factor in R). Note that in case the time-variable was numerical, R
would perform an analysis similar to linear regression only with correlated data.

• repetition=∼visit|id together with structure=”UN” specifies an unstruc-
tured correlation matrix for the repeated measurements. We have to supply id and
visit (or time) as shown in the above so that R knows which repeated measurements
belong to the same subject and what their temporal ordering is.

• data specifies which dataframe the analysis is based on. This must be long format.

• If sample size is large, the optional argument df=FALSE can be used to speed up com-
putation with little impact on the results. With small to moderate sample sizes, it is rec-
ommended to keep the default which is to compute the denominator degrees of freedom
using the Satterthwaite approximation.
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7.2 Checking convergence

You don’t need to understand how the numerical optimisation within lmm works to analyze
your data. However, you do need to know whether or not your attempt to fit the linear mixed
model has succeeded. That is, whether or not the numerical optimisation has converged, see
section 6.8.

Fortunately, checking convergence is easy. If your attempt to fit the linear mixed model is
successful, then R produces no output in the console. It ought to look like this:

At the same time, you can check whether the model object has been added to your workspace
(in R Studio, look for fit.main in the list of objects in the Environment window). On the
other hand, if the numerical optimisation fails to converge, R will return a more or less compre-
hensible error message.

So what if the model doesn’t converge? Most often non-convergence is caused by simple
errors like misspelling the name of a variable or applying lmm to the wrong dataframe. If you
fix the error, the analysis will proceed smoothly. Changing the scale of the outcome, e.g. from
body weight in g to bodyweight in kg, makes the optimisation procedure run more smoothly
as does standardisation of numerical covariates (subtract the mean and divide by the standard
deviation). Otherwise convergence issues often occur when trying to fit a too complex model
to a too small dataset. Extreme outliers may also cause problems. If you cannot figure out why
your mixed models doesn’t converge, you should get help from a statistician.

Beware of false convergence: In rare cases it happens that R mistakes some implausible values
for the maximum likelihood estimates or their standard error. This is called false convergence.
Before you conclude on an analysis, you should therefore check that estimated covariance pa-
rameters and standard errors look reasonable and use fitted values and residuals for model vali-
dation as described in section 7.6 below. If you suspect that your attempt to fit the linear mixed
model has resulted in false convergence, you should get help from a statistician.

7.3 R program: Extracting results from the model object

Assuming that you attempt to fit the linear mixed model was successful, R has assigned a model
object to the name fit.main. From this you can extract different kinds of statistical results.
Here we describe a number of useful extractor functions:

• summary(fit.main) returns estimates, approximate p-values2, an overall model sum-
mary, and a load of other more or less useful information. A commented version of the
full output can be found in appendix C.

2Approximate means that confidence intervals and p-values are valid for large samples, see sections 6.9–6.10.
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• confint(fit.main) returns estimates and approximate 95% confidence intervals2.

• plot(fit.main) display the fitted values over time.

• If you want to extract the estimated covariance matrix use sigma(fit.main)

• anova(fit.main) tests the global null hypothesis H0 : µ1 = µ2 = µ3 = µ4. This will
make an approximate F-test2 with respect to the degrees of freedom inherited from the
model object.

• The predicted population means can be computed with the predict-function. In order
to use it, we first need to construct a new data frame containing the values of the covariates
we want to make predictions for. Here we extract the distinct values of time from the
original data:

# Make a dataset with covariate values for prediction:
pred <- long[,c(’time’)]

# Reduce to one of each value:
pred <- unique(pred)

# Add predicted means to the dataframe:
pred <- cbind(pred, predict(fit.main, newdata=pred))

Once the covariates and the predicted values have been stored in the same dataframe it is
easy to plot the predictions with xyplot:

xyplot(estimate~time, data=pred, type="b")

• residuals(fit.main, type="studentized") extracts the studentized resid-
uals. By varying the type argument, you can also get the ordinary residuals, the pearson
residuals, and the scaled residuals. To assess how well the linear mixed model fits the
data, we recommend making the following diagnostic plots:

par(mfrow=c(2,2))
plot(fitted(fit.main), residuals(fit.main, type="studentized"))
abline(h=0)
qqnorm(residuals(fit.main, type="studentized"))
abline(0,1)
plot(fitted(fit.main), residuals(fit.main, type="scaled"))
abline(h=0)
qqnorm(residuals(fit.main, type="scaled"))
abline(0,1)

7.4 Interpretation of estimates, confidence intervals, and p-values

Mean parameters: The most interesting part of the output is the estimated time effect, i.e. the
estimated mean changes in bodyweight (kg) since baseline. These are reported for time =
-1 week, time = +1 week, and time = +3 month follow-up. The intercept in this
model corresponds to the estimated population mean at baseline (time = -3 month):
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Fixed effects: weight ~ time

estimate se df lower upper p.value
(Intercept) 128.97 4.532 18.981 119.483 119.483 <0.001 ***
time-1 week -7.73 0.697 18.974 -9.19 -9.19 <0.001 ***
time+1 week -13.27 0.839 18.969 -15.027 -15.027 <0.001 ***
time+3 month -26.605 1.549 18.964 -29.848 -29.848 <0.001 ***

The columns lower and upper correspond to the 95% confidence interval
Degrees of freedom were computed using a Satterthwaite approximation

The p-values for the time effects are all very small, so there is strong evidence that the mean
bodyweight has decreased since baseline at all follow-up times. Estimated changes are -7.7
kg, -13.3 kg, and -26.6 kg at -1 week, +1 week, and -3 months follow-up, respectively. The
confidence intervals tell us that the mean bodyweight is substantially lower at all follow-up
times compared with baseline. This is no surprise, since both the pre-surgery diet and the gastric
bypass has a well documented effect. Finally note that both the p-values and the confidence
intervals are computed using a Satterthwaite approximation. This is important since the sample
size is small (only n = 20 subjects).

Covariance parameters: The covariance parameters are usually of secondary interest to the
mean parameters in linear mixed models analyses. However, you should still check on them,
firstly since implausible values indicate errors in the data or the program, and secondly because
they will help you get a better understanding of linear mixed models and the multivariate nor-
mal distributions. Finally, you might need the estimated covariance parameters to check the
assumptions of a preceding power calculation or to make a new calculation for a future study.

For the gastric bypass study, the estimated correlations are:

- correlation structure: ~visit | id
1 2 3 4

1 1.000 0.990 0.986 0.946
2 0.990 1.000 0.997 0.959
3 0.986 0.997 1.000 0.966
4 0.946 0.959 0.966 1.000

and the estimated standard deviations are:

- variance structure: ~visit
standard.deviation ratio

1 20.26942 1.0000000
2 18.91022 0.9329435
3 18.27535 0.9016220
4 17.05391 0.8413614

Please note that these estimates are identical to the summary statistics in section 5. This will
always be the case if we analyse complete data from a balanced single group study with a model
that is fully flexible (i.e. time as a categorical covariate and an unstructured covariance pattern).
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Type 3 tests: If you would rather test the hypothesis H0 : µ1 = µ2 = µ3 = µ4, i.e. that no
changes in means whatsoever occur over time. This is what you get from the F-test using the
anova-function:

** mean coefficients **
- F-test

statistic df.num df.denom p.value
time 121.6594 3 18.97809 1.427969e-12

Note the usual limitation of the F-test: If the hypothesis is rejected, further comparisons are
needed to investigate between which particular follow-up times significant differences occur.
On the other hand, if the hypothesis is not rejected, you still want to estimate the differences
between the follow-up times to assess whether this is likely due to lack of effect or lack of
power. Hence, you might as well skip the F-test and do the pairwise comparisons to begin with
(don’t forget to make adjustment for multiple testing).

One further issue with the F-test, is that it is based on approximate degrees of freedom which
are valid in large samples (see section 6.10). If the sample size is small as in the gastric bypass
study, the p-value will be somewhat too small. However, when as in this case P < 0.0001. this
has no impact on the strength of the evidence overall.

7.5 R Program: Alternative model specification (means over time)

Often researchers want to report estimated means for the various occasions along with the esti-
mated changes in means which we obtained from the program in section 7.1.

We can make lmm estimate means over time rather than changes in means over time with a
small change to the syntax. Adding -1 to the model formula, makes R fit the model without an
intercept, meaning that each follow-up time gets a separate mean parameter:

### Alternative syntax: means over time ####
fit.means <- lmm(weight~-1+time,

repetition=~visit|id,
structure="UN",
data=long)

Note that, besides the change to the model formula, the syntax is identical to that of section 7.1.
From this we extract the estimated means with approximate 95% confidence intervals:

# Extract estimated means and confidence intervals:
confint(fit.means)

estimate lower upper
time-3 month 129 119.5 138
time-1 week 121 112.4 130
time+1 week 116 107.1 124
time+3 month 102 94.4 110
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When interpreting the confidence intervals it is important to keep the difference between inde-
pendent and paired samples in mind. Estimated means from baseline and 1 week before surgery
are contained in each others confidence intervals. Nevertheless, we concluded a significant dif-
ference in mean body weight with P< 0.0001 in section 7.4. This is a consequence of the strong
correlation in the data: The paired t-test has much higher statistical power than the two-sample
t-test. Recall that, we can only infer a significant difference from non-overlapping confidence
intervals when samples are independent. This is a fact you might have to remind the reviewer
of your paper otherwise you risk getting it rejected due to a false claim of statistical errors.

7.6 Model validation using predicted values and residuals

Predicted population means and standard deviations: As an initial model check we plot
the predicted population means over time. These should be compared to the similar plots of
the summary statistics (section 5.4). If the predictions deviate substantially from the summary
statistics, this would indicate either an error in the code or a poor choice of model.

Figure 9: Predicted population means over time from the linear mixed model analysis of the
gastric bypass study.

As we have already noted, estimated means and standard deviations for the bodyweights are
identical to the summary statistics from section 5. This will always be the case when you have
complete data from a balanced single group study and fit a fully flexible model for the mean
and the covariance (i.e. time as a categorical covariate and an unstructured covariance pattern).

Residualplots are useful for checking the modeling assumption that data follows a multivariate
normal distribution and for detecting outliers in the data. A large studentized residual (either
positive or negative) indicates that the outcome is far from the expected mean outcome in the
population measured in number of standard deviations. Similarly a large scaled residual indi-
cates that the observation is far from the expected outcome predicted by the past outcomes.
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Figure 10 displays the studentized and scaled residuals which are directly comparable to the
standard normal distribution. If data is truly normal, the points ought to be on the diagonal lines
in QQ-plots save from small random deviations. In this case the the QQ-plot of the studentized
residuals seems to be smiling indicating that the distribution of the residuals is skew compared
to the normal distribution.

Figure 10: Studentized and scaled residuals from the linear mixed model analysis of the gastric
bypass study.

To identify which subjects the outlying residuals belong to, we could match their indices with
the rows in the long data. However, the most extreme outliers should be obvious already in the
spaghettiplots which are easier to interpret since data is shown on its original scale. In this case
the residual values > 2 all belong to the same person (the heaviest participant in the study).

35



References

Fitzmaurice, G. M.; Laird, N. M. & Ware, J. H. (2012). Applied longitudinal analysis, volume
998. John Wiley & Sons.

Hrong-Tai Fai, A. & Cornelius, P. L. (1996). “Approximate F-tests of multiple degree of
freedom hypotheses in generalized least squares analyses of unbalanced split-plot experi-
ments”. Journal of statistical computation and simulation, 54(4):363–378.

Jorsal, T.; Christensen, M. M.; Mortensen, B.; Nygaard, E. B.; Zhang, C.; Rigbolt, K.; Wandall,
E.; Langholz, E.; Friis, S.; Worm, D. et al. (2020). “Gut Mucosal Gene Expression and
Metabolic Changes After Roux-en-Y Gastric Bypass Surgery”. Obesity, 28(11):2163–
2174.

Kenward, M. G. & Roger, J. H. (2009). “An improved approximation to the precision of fixed
effects from restricted maximum likelihood”. Computational Statistics & Data Analysis,
53(7):2583–2595.

Pinheiro, J. & Bates, D. (2006). Mixed-effects models in S and S-PLUS. Springer Science &
Business Media.

Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D. & R Core Team (2019). nlme: Linear and
Nonlinear Mixed Effects Models. R package version 3.1-140.

A Appendix: Importing data from an external file.

Rather than creating data from within R, we usually import data from an external file. If you
prefer this option, a text file version of the gastric bypass data can be found at the course
webpage together with the program files.

To read the data from gastricbypass.txt, first download it to your computer. Next run
the code below. Please note that you have to change the path in the program so that it matches
the working directory where you have stored the file.

# Set working directory:
setwd("C:/Documents/teaching/repeated/casestudies/gastricbypass")

# Read data from gastricbypass.txt:
wide <- read.table("gastricbypass.txt", header=TRUE, na.strings=".")

# Change id to a categorical variable:
wide$id <- factor(wide$id)

Note that missing data appear as .’s in the datafile. The argument na.strings="." ensure
that they will be represented appropriately with NAs in R. The argument header=TRUE tells
R that the first line in the datafile contains the names of the variables.
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B Appendix: Random effect and compound symmetry?.

In section 6.6 we considered the more restrictive compound symmetry pattern, which is equiv-
alent to having a random effect of subject in a linear mixed model.

The direct specification would define the linear mixed model as:

Yi j = β1Xi j1 + . . .+βmXi jm + εi j

where for each subject i ∈ {1, . . . ,n}, the residual vector (εi1, . . . ,εik) follows a multivariate
normal distribution with mean 0 and covariance:

ΣCS =


σ2 σ2ρ . . . σ2ρ σ2ρ

σ2ρ σ2 . . . σ2ρ σ2ρ

... . . . ...
σ2ρ σ2ρ . . . σ2 σ2ρ

σ2ρ σ2ρ . . . σ2ρ σ2


We can introduce τ = σ2ρ and σ2

∗ = σ2− τ . If ρ > 0, we have σ2
∗ = σ2(1−ρ)> 0 so both τ

and σ2
∗ are strictly positive. Hence, we can re-express the covariance matrix as:

ΣCS =


τ +σ2

∗ τ . . . τ τ

τ τ +σ2
∗ . . . τ τ

... . . . ...
τ τ . . . τ +σ2

∗ τ

τ τ . . . τ τ +σ2
∗

= τJ+σ
2
∗ I

where I is the identity matrix and J is a matrix of 1s. This leads to the random intercept model

Yi j = β1Xi j1 + . . .+βmXi jm +ui +ξi j

where the random effect ui is normally distributed with mean 0 and variance τ and independent
of the residuals ξi j. These residuals are independent and normally distributed with variance σ2

∗ .

We demonstrate the equivalence between the two models on our case study. We use the lme
function from the nlme package to fit the random effects model:

fit.rintercept <- lme(weight~time,
random=~1|id,
data = long)

and get the following estimates for
√

τ and
√

σ2
∗ :

Random effects:
Formula: ~1 | id

(Intercept) Residual
StdDev: 18.37874 3.246283
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Next, we run lmm withstructure = "CS" to fit the compound symmetry pattern:

fit.CS <- lmm(weight~time,
repetition=~visit|id,
structure="CS",
data=long)

We obtain the following estimates for σ2 and ρ:

> sigma2 <- coef(fit.CS, effect = "variance")^2
> rho <- coef(fit.CS, effect = "correlation")
> c(sigma2,rho)

sigma Rho
348.3162479 0.9697449

We verify that the log-Likelihood are the same for the two models:

>logLik(fit.rintercept)
’log Lik.’ -249.5052 (df=6)
> logLik(fit.CS)
[1] -249.5052

Using that
√

τ =
√

σ2ρ and
√

σ2
∗ =

√
σ2(1−ρ), we can match the covariance parameters of

the random effects model:

> c(sqrt(sigma2*rho),sqrt(sigma2*(1-rho)))
sigma sigma

18.378735 3.246283

C Appendix: What is in the model summary from lmm?

The summary-function produces a lot of output. Here we will comment on it, bit by bit.

First the output tells us what dataframe the analysis has been applied to. R makes a summary
of how many subjects there are in the data and how many observation there are per cluster and
in total.

Dataset: long

- 20 clusters
- 80 observations
- 4 observations per cluster
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Next, we get summary statistics for the outcome and covariates in the model:

Summary of the outcome and covariates:

$ weight: num 127 165 110 146 113 ...
$ time : Factor w/ 4 levels "-3 month","-1 week",..: 1 1 1 1 1 1 1 1 1 1 ...
reference level: time=-3 month

If any of the covariates are categorical, we are reminded what the reference levels are.

The next part of the output tells us what numerical optimisation R has performed:

Estimation procedure

- Restricted Maximum Likelihood (REML)
- log-likelihood :-223.3793
- parameters: mean = 4, variance = 4, correlation = 6

Restricted maximum likelihood (REML) is recommended for mixed models so this is all good.
The deviance (log-likelihood) provides an overall goodness of fit measure for the model.

After this, we get estimates of the covariance parameters starting with the correlations:

Residual variance-covariance: unstructured

- correlation structure: ~visit | id
1 2 3 4

1 1.000 0.990 0.986 0.946
2 0.990 1.000 0.997 0.959
3 0.986 0.997 1.000 0.966
4 0.946 0.959 0.966 1.000

If you compare these to the correlation coefficients we computed as descriptive statistics, you
will see that they are just the same. This will happen any time you have complete data from a
balanced single group study. The same occurs for the estimated standard deviations (save from
a tiny numerical error):

- variance structure: ~visit
standard.deviation ratio

1 20.26942 1.0000000
2 18.91022 0.9329435
3 18.27535 0.9016220
4 17.05391 0.8413614

Note that the column ratio compares the standard deviations at follow-up to the standard
deviation at -3 months (reference point). We see that the standard deviation at -1 week is a
factor 0.93 smaller, and so forth.
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The most interesting part of the summary is of course the estimates for the effect of the covari-
ates; This is the part of the summary output which we commented on in section 7.4:

Fixed effects: weight ~ time

estimate se df lower upper p.value
(Intercept) 128.97 4.532 18.981 119.483 119.483 <0.001 ***
time-1 week -7.73 0.697 18.974 -9.19 -9.19 <0.001 ***
time+1 week -13.27 0.839 18.969 -15.027 -15.027 <0.001 ***
time+3 month -26.605 1.549 18.964 -29.848 -29.848 <0.001 ***

The columns lower and upper correspond to the 95% confidence interval
Degrees of freedom were computed using a Satterthwaite approximation

Along with the estimates we get standard error, t-test statistics, and a p-values for testing the
hypothesis that the parameter in consideration is zero. It is important to know that degrees of
freedom used to evaluate the t-tests are computed according to the Satterthwaite approximation.
Without this approximation, the confidence intervals would be too narrow and the p-values
would be too small, see sections 6.9 – 6.10.

D Appendix: Analysis of log-transformed data.

We previously noted that the distribution of the bodyweights is skewed with few very heavy
subjects, a majority of moderately heavy subjects, and no normal weight subjects. Also the
weights of the most heavy subjects appeared more variable over time than those of the lightest
subjects in the sample. Finally there was a trend that the standard deviations decreased along
with the means. All of this speaks in favour of a logarithmic-transformation.

Overall recommendations on log-transformation is to use it when:

• It is desirable that changes over time or differences between treatments should be esti-
mated in relative terms, i.e. as percentwise changes or differences.

• It is a substantial improvement on the original model fit.

• There is precedence to transform outcomes of this particular type in the literature.

If you are in doubt whether your data should be transformed it is usually better to stick to the
original scale. Otherwise consult with a statistician about it.

Figure 11 below compares the spaghettiplot of log2-transformed data with that of the original
data and figure 12 shows the scatterplot matrix for the log2-transformed data. The distribution
of the log2-transformed data is more symmetric and therefore closer to a normal distribution
than the original data.
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Figure 11: Bodyweights from the gastric bypass study on original scale (left) and after log2-
transformation (right).

Figure 12: Scatterplot matrices of log2-transformed weights from the gastric bypass study. This
should be compared with figure 4 showing the data on the original scale.

.
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Making an analysis of log-transformed data is similar to making an analysis of untrans-
formed data save from the first and the last step in the analysis. The first step would be to add
the log-transformed outcome to the long data and review the spaghettiplot:

# Add log-transformed outcome to long data:
long$log2weight <- log2(long$weight)

# Spaghettiplot:
xyplot(log2w~time, data=long, group=id, type="b")

Then we redo the mixed model analysis. Please note that the R code is identical to that in
section 7.1 save from the name of the model object and the outcome:

fit.log <- lmm(log2weight~time,
repetition=~visit|id,
structure="UN",
df=TRUE,
data=long)

From here on the analysis proceeds as in section 7. After we extract the estimates and confidence
intervals for reporting, the final step is to back-transform for interpretation:

# Extract and back-transform estimates and CIs:
2^confint(fit.log)

estimate lower upper
(Intercept) 127.5466585 118.8507570 136.8788092
time-1 week 0.9401516 0.9304585 0.9499458
time+1 week 0.8969349 0.8863761 0.9076195
time+3 month 0.7929295 0.7753979 0.8108574

Hence, we estimate that median bodyweight has decreased by -6.0% (95% CI: -6.9% to -5.1%)
at first follow-up, by -10.3% (95% CI: -11.3% to -9.3%) at second follow-up, and by -20.7%
(95% CI: -22.4% to -19.0%) at end of study.

Similarly, we could obtain estimates of means over time on log2-scale and back-transform them
into estimated medians on the original scale.3 Note that the estimated median bodyweight at
baseline is 127.5 kg (95% CI: 119.3 to 136.4 kg). This is smaller than the estimated mean of
129.0 kg we found when analyzing the data on the original scale, albeit not much smaller as the
distribution of the bodyweights is only moderately skew.

To assess whether the linear mixed model fits the log2-transformed data well we inspect the
residual plots (figure 13 on next page).

3Since transformation preserves quantiles (including the median) and since in a symmetric distribution (includ-
ing the normal distribution) the mean is the same as the median. In case data on log-scale is only approximately
normal (symmetric), back-transformed means will be geometric means on the original scale.
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# Residualplots for model validation:
par(mfrow=c(2,2))
plot(fitted(fit.log), residuals(fit.log, type="studentized"))
abline(h=0)
qqnorm(residuals(fit.log, type="studentized"))
abline(0,1)
plot(fitted(fit.log), residuals(fit.log, type="scaled"))
abline(h=0)
qqnorm(residuals(fit.log, type="scaled"))
abline(0,1)

After the transformation, the residuals show a slightly better fit to the normal distribution.

Figure 13: Residuals from the mixed model analysis of the log2-transformed data.
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