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 Econometrica, Vol. 50, No. 4 (July, 1982)

 AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY

 WITH ESTIMATES OF THE VARIANCE OF

 UNITED KINGDOM INFLATION1

 BY ROBERT F. ENGLE

 Traditional econometric models assume a constant one-period forecast variance. To
 generalize this implausible assumption, a new class of stochastic processes called autore-
 gressive conditional heteroscedastic (ARCH) processes are introduced in this paper. These
 are mean zero, serially uncorrelated processes with nonconstant variances conditional on
 the past, but constant unconditional variances. For such processes, the recent past gives
 information about the one-period forecast variance.

 A regression model is then introduced with disturbances following an ARCH process.
 Maximum likelihood estimators are described and a simple scoring iteration formulated.
 Ordinary least squares maintains its optimality properties in this set-up, but maximum
 likelihood is more efficient. The relative efficiency is calculated and can be infinite. To test
 whether the disturbances follow an ARCH process, the Lagrange multiplier procedure is
 employed. The test is based simply on the autocorrelation of the squared OLS residuals.

 This model is used to estimate the means and variances of inflation in the U.K. The
 ARCH effect is found to be significant and the estimated variances increase substantially
 during the chaotic seventies.

 1. INTRODUCTION

 IF A RANDOM VARIABLE Yt is drawn from the conditional density function

 f(ly Iyt- 1), the forecast of today's value based upon the past information, under
 standard assumptions, is simply E(y I y,- 1), which depends upon the value of the
 conditioning variable Yt - 1. The variance of this one-period forecast is given by

 V(yt Iy,- ). Such an expression recognizes that the conditional forecast variance
 depends upon past information and may therefore be a random variable. For
 conventional econometric models, however, the conditional variance does not

 depend upon Yt- 1. This paper will propose a class of models where the variance
 does depend upon the past and will argue for their usefulness in economics.
 Estimation methods, tests for the presence of such models, and an empirical
 example will be presented.

 Consider initially the first-order autoregression

 Yt = YYt- I + Et

 where E is white noise with V(E) = a2. The conditional mean of Yt is yYt-1 while
 the unconditional mean is zero. Clearly, the vast improvement in forecasts due to
 time-series models stems from the use of the conditional mean. The conditional

 'This paper was written while the author was visiting the London School of Economics. He
 benefited greatly from many stimulating conversations with David Hendry and helpful suggestions
 by Denis Sargan and Andrew Harvey. Special thanks are due Frank Srba who carried out the
 computations. Further insightful comments are due to Clive Granger, Tom Rothenberg, Edmond
 Malinvaud, Jean-Francois Richard, Wayne Fuller, and two anonymous referees. The research was
 supported by NSF SOC 78-09476 and The International Centre for Economics and Related
 Disciplines. All errors remain the author's responsibility.
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 988 ROBERT F. ENGLE

 variance of Yt is a2 while the unconditional variance is a2/1 - y2. For real

 processes one might expect better forecast intervals if additional information

 from the past were allowed to affect the forecast variance; a more general class

 of models seems desirable.

 The standard approach of heteroscedasticity is to introduce an exogenous

 variable xt which predicts the variance. With a known zero mean, the model
 might be

 Yt = EtXt - 1

 where again V(e) = a2. The variance of Yt is simply a2x2 I and, therefore, the
 forecast interval depends upon the evolution of an exogenous variable. This

 standard solution to the problem seems unsatisfactory, as it requires a specifica-
 tion of the causes of the changing variance, rather than recognizing that both

 conditional means and variances may jointly evolve over time. Perhaps because
 of this difficulty, heteroscedasticity corrections are rarely considered in time-
 series data.

 A model which allows the conditional variance to depend on the past realiza-

 tion of the series is the bilinear model described by Granger and Andersen [13].
 A simple case is

 Yt = EtYtt- lI

 The conditional variance is now a Yt _ 1. However, the unconditional variance is
 either zero or infinity, which makes this an unattractive formulation, although
 slight generalizations avoid this problem.

 A preferable model is

 Yt =tht1/2,

 ht= a + aiy 2

 with V(E,)= 1. This is an example of what will be called an autoregressive
 conditional heteroscedasticity (ARCH) model. It is not exactly a bilinear model,

 but is very close to one. Adding the assumption of normality, it can be more

 directly expressed in terms of At, the information set available at time t. Using
 conditional densities,

 (1) Yt I t_-N(O,ht)g

 (2) ht a=o + a Yt- 1

 The variance function can be expressed more generally as

 (3) ht= h(yt- 1,Yt-29 . . . yt-p, a)

 where p is the order of the ARCH process and a is a vector of unknown
 parameters.
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 HETEROSCEDASTICITY 989

 The ARCH regression model is obtained by assuming that the mean of Yt is

 given as x,i8, a linear combination of lagged endogenous and exogenous variables
 included in the information set At-l with 3 a vector of unknown parameters.

 Formally,

 Yt I At- -N (xft8, ht),

 (4) ht= h (Et- I et -.2 E * , a)

 t =Yt - XtI/.

 The variance function can be further generalized to include current and lagged

 x's as these also enter the information set. The h function then becomes

 (S) ht =h (Et- I, * ... 9t-p, xt, xt- I,9 ... ., xtp, a)

 or simply

 ht= h (.pt-a).

 This generalization will not be treated in this paper, but represents a simple

 extension of the results. In particular, if the h function factors into

 ht= hE(Et -1, . . ., t-p, a)hx(xt, . .. *, xt-p)

 the two types of heteroscedasticity can be dealt with sequentially by first
 correcting for the x component and then fitting the ARCH model on the
 transformed data.

 The ARCH regression model in (4) has a variety of characteristics which make
 it attractive for econometric applications. Econometric forecasters have found
 that their ability to predict the future varies from one period to another. McNees
 [17, p. 52] suggests that, "the inherent uncertainty or randomness associated with
 different forecast periods seems to vary widely over time." He also documents
 that, "large and small errors tend to cluster together (in contiguous time peri-
 ods)." This analysis immediately suggests the usefulness of the ARCH model
 where the underlying forecast variance may change over time and is predicted by

 past forecast errors. The results presented by McNees also show some serial
 correlation during the episodes of large variance.

 A second example is found in monetary theory and the theory of finance. By

 the simplest assumptions, portfolios of financial assets are held as functions of
 the expected means and variances of the rates of return. Any shifts in asset
 demand must be associated with changes in expected means and variances of the
 rates of return. If the mean is assumed to follow a standard regression or
 time-series model, the variance is immediately constrained to be constant over

 time. The use of an exogenous variable to explain changes in variance is usually
 not appropriate.
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 990 ROBERT F. ENGLE

 A third interpretation is that the ARCH regression model is an approximation
 to a more complex regression which has non-ARCH disturbances. The ARCH

 specification might then be picking up the effect of variables omitted from the

 estimated model. The existence of an ARCH effect would be interpreted as

 evidence of misspecification, either by omitted variables or through structural
 change. If this is the case, ARCH may be a better approximation to reality than
 making standard assumptions about the disturbances, but trying to find the
 omitted variable or determine the nature of the structural change would be even
 better.

 Empirical work using time-series data frequently adopts ad hoc methods to
 measure (and allow) shifts in the variance over time. For example, Klein [15]

 obtains estimates of variance by constructing the five-period moving variance
 about the ten-period moving mean of annual inflation rates. Others, such as
 Khan [14], resort to the notion of "variability" rather than variance, and use the

 absolute value of the first difference of the inflation rate. Engle [10] compares
 these with the ARCH estimates for U.S. data.

 2. THE LIKELIHOOD FUNCTION

 Suppose y, is generated by an ARCH process described in equations (1) and
 (3). The properties of this process can easily be determined by repeated applica-

 tion of the relation Ex = E(Ex I4) The mean of y, is zero and all auto-
 covariances are zero. The unconditional variance is given by at = Eyt = Eht. For
 many functions h and values of a, the variance is independent of t. Under such

 conditions, yt is covariance stationary; a set of sufficient conditions for this is
 derived below.

 Although the process defined by (1) and (3) has all observations conditionally

 normally distributed, the vector of y is not jointly normally distributed. The joint
 density is the product of all the conditional densities and, therefore, the log

 likelihood is the sum of the conditional normal log likelihoods corresponding to

 (1) and (3). Let / be the average log likelihood and 1, be the log likelihood of the
 tth observation and T the sample size. Then

 T

 l= I z i,,
 T ,=1

 (6)

 lt=- log ht,-l y2lht, 2 ~t2'yt/

 apart from some constants in the likelihood.
 To estimate the unknown parameters a, this likelihood function can be

 maximized. The first-order conditions are

 (7) Yt 1 2h, (H aa 2h aa 1)
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 HETEROSCEDASTICITY 991

 and the Hessian is

 (8) _ h h ~ + [ i- I~~~
 ) aaaa' =-2h aa aa' h [ h -J]aa 2ht aaj

 The conditional expectation of the second term, given 4'1-m-1' is zero, and of the
 last factor in the first, is just one. Hence, the information matrix, which is simply
 the negative expectation of the Hessian averaged over all observations, becomes

 (9) E =aht aht

 which is consistently estimated by

 (10) laa T

 If the h function is pth order linear (in the squares), so that it can be written as

 (11) h= + y2 + * +

 then the information matrix and gradient have a particularly simple form. Let

 Zt = (1yi2_ . y2 * p) and a' = (ao,a1, o * , a,p) so that (11) can be rewritten as

 (12) ht = zta.

 The gradient then becomes simply

 (13) = Yt )

 and the estimate of the information matrix

 (14) x = I (zztlht

 3. DISTRIBUTION OF THE FIRST-ORDER LINEAR ARCH PROCESS

 The simplest and often very useful ARCH model is the first-order linear model
 given by (1) and (2). A large observation for y will lead to a large variance for the

 next period's distribution, but the memory is confined to one period. If a, = 0, of
 course y will be Gaussian white noise and if it is a positive number, successive
 observations will be dependent through higher-order moments. As shown below,
 if a, is too large, the variance of the process will be infinite.

 To determine the conditions for the process to be stationary and to find the
 marginal distribution of the y's, a recursive argument is required. The odd
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 992 ROBERT F. ENGLE

 moments are immediately seen to be zero by symmetry and the even moments
 are computed using the following theorem. In all cases it is assumed that the
 process begins indefinitely far in the past with 2r finite initial moments.

 THEOREM 1: For integer r, the 2rth moment of a first-order linear ARCH

 process with ao > 0, a1 > 0, exists if, and only if,

 r

 a, 1 r (2j - 1 ) < 1.
 j=1

 A constructive expression for the moments is given in the proof.

 PROOF: See Appendix.

 The theorem is easily used to find the second and fourth moments of a

 first-order process. Letting w1 = (y4, y2)',

 E(wt i t-1) )(3ao) + (3a 6aoa)w

 The condition for the variance to be finite is simply that a1 < 1, while to have a
 finite fourth moment it is also required that 3af < 1. If these conditions are met,
 the moments can be computed from (A4) as

 F 3ao IF 1- a,
 (15) E(w) a= (1 ai)2 IL 1-3al J

 ao

 1-a1

 The lower element is the unconditional variance, while the upper product gives
 the fourth moment. The first expression in square brackets is three times the

 squared variance. For a , 0, the second term is strictly greater than one
 implying a fourth moment greater than that of a normal random variable.

 The first-order ARCH process generates data with fatter tails than the normal

 density. Many statistical procedures have been designed to be robust to large
 errors, but to the author's knowledge, none of this literature has made use of the

 fact that temporal clustering of outliers can be used to predict their occurrence
 and minimize their effects. This is exactly the approach taken by the ARCH
 model.

 4. GENERAL ARCH PROCESSES

 The conditions for a first-order linear ARCH process to have a finite variance
 and, therefore, to be covariance stationary can directly be generalized for
 pth-order processes.
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 HETEROSCEDASTICITY 993

 THEOREM 2: The pth-order linear ARCH processes, with ao > 0, a,, . ap
 > 0, is covariance stationary if, and only if, the associated characteristic equation
 has all roots outside the unit circle. The stationary variance is given by E(y72) = ao/

 (1 - J=Iaj).

 PROOF: See Appendix.

 Although the pth-order linear model is a convenient specification, it is likely

 that other formulations of the variance model may be more appropriate for

 particular applications. Two simple alternatives are the exponential and absolute

 value forms:

 (16) ht = exp(ao + al 2tl

 (17) ht = ao + allyt_ d.
 These provide an interesting contrast. The exponential form has the advantage

 that the variance is positive for all values of alpha, but it is not difficult to show

 that data generated from such a model have infinite variance for any value of

 a,1 & 0. The implications of this deserve further study. The absolute value form
 requires both parameters to be positive, but can be shown to have finite variance

 for any parameter values.

 In order to find estimation results which are more general than the linear
 model, general conditions on the variance model will be formulated and shown
 to be implied for the linear process.

 Let (t be a p x 1 random vector drawn from the sample space Z, which has

 elements g = ((t- , . . . ., -p). For any (t, let (t* be identical, except that the mth
 element has been multiplied by - 1, where m lies between 1 and p.

 DEFINITION: The ARCH process defined by (1) and (3) is symmetric if

 (a) h(t) = h()t* for any m and (,EZ,

 (b) ah(tt)/aaj = ah(et* )/aai for any m, i and ,

 (c) ah( -)/atm =m-ah((7)/at,__ for any m and (1cZ

 All the functions described have been symmetric. This condition is the main
 distinction between mean and variance models.

 Another characterization of general ARCH models is in terms of regularity
 conditions.

 DEFINITION: The ARCH model defined by (1) and (3) is regular if

 (a) minh((t) > 6 for some 6 > 0 and ,

 (b) E(Iah((t )/aajIjah((t )/att-mj 'Pt-m- 1) exists for all i, m, t.
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 994 ROBERT F. ENGLE

 The first portion of the definition is very important and easy to check, as it
 requires the variance always to be positive. This eliminates, for example, the
 log-log autoregression. The second portion is difficult to check in some cases, yet
 should generally be true if the process is stationary with bounded derivatives,
 since conditional expectations are finite if unconditional ones are. Condition (b)
 is a sufficient condition for the existence of some expectations of the Hessian
 used in Theorem 4. Presumably weaker conditions could be found.

 THEOREM 3: The pth-order linear ARCH model satisfies the regularity condi-

 tions, if ao > O and a,, . . ., ap > O.

 PROOF: See Appendix.

 In the estimation portion of the paper, a very substantial simplification results
 if the ARCH process is symmetric and regular.

 5. ARCH REGRESSION MODELS

 If the ARCH random variables discussed thus far have a non-zero mean,
 which can be expressed as a linear combination of exogenous and lagged
 dependent variables, then a regression framework is appropriate, and the model
 can be written as in (4) or (5). An alternative interpretation for the model is that
 the disturbances in a linear regression follow an ARCH process.

 In the pth-order linear case, the specification and likelihood are given by

 Yt I At- -1 N (x, iht),

 h =ao+aa,1_+. * +apE2, t t - I _~~~p,tp
 (18) Et Yt -Xtfl,

 T

 Tt = I

 - =1ogh,- 1,21h,

 where x, may include lagged dependent and exogenous variables and an irrele-
 vant constant has been omitted from the likelihood. This likelihood function can

 be maximized with respect to the unknown parameters a and /P. Attractive
 methods for computing such an estimate and its properties are discussed below.

 Under the assumptions in (18), the ordinary least squares estimator of /P is still
 consistent as x and E are uncorrelated through the definition of the regression as
 a conditional expectation. If the x's can be treated as fixed constants then the
 least squares standard errors will be correct; however, if there are lagged

 dependent variables in xt, the standard errors as conventionally computed will
 not be consistent, since the squares of the disturbances will be correlated with
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 HETEROSCEDASTICITY 995

 squares of the x's. This is an extension of White's [18] argument on heterosce-

 dasticity and it suggests that using his alternative form for the covariance matrix
 would give a consistent estimate of the least-squares standard errors.

 If the regressors include no lagged dependent variables and the process is
 stationary, then letting y and x be the T x 1 and T x K vector and matrix of
 dependent and independent variables, respectively,

 E(y I x) = x,8,
 (19)

 Var(y I x) = a21

 and the Gauss-Markov assumptions are statisfied. Ordinary least squares is the
 best linear unbiased estimator for the model in (18) and the variance estimates
 are unbiased and consistent. However, maximum likelihood is different and
 consequently asymptotically superior; ordinary least squares does not achieve the
 Cramer-Rao bound. The maximum-likelihood estimator is nonlinear and is
 more efficient than OLS by an amount calculated in Section 6.

 The maximum likelihood estimator is found by solving the first order condi-

 tions. The derivative with respect to ,B is

 (20) as ht + 2h a8/ ht j
 The first term is the familiar first-order condition for an exogenous heterosce-

 dastic correction; the second term results because ht is also a function of the /3's,
 as in Amemiya [1]. Substituting the linear variance function gives

 (21) aA T E[ EtXh;1(E71 )Xte .x1,_,

 which can be rewritten approximately by collecting terms in x and e as

 (22) = LxEt[htl- E hj-
 t

 The Hessian is

 82 = _ x _ 1. h h 7'
 8228/ x ht 2ht - aj3 E 3 - h,/

 _ 2etXt 8ht+(6 i -18 a + ah,1

 h72 8a/ hV t 8/3'L 2hh a82
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 996 ROBERT F. ENGLE

 Taking conditional expectations of the Hessian, the last two terms vanish

 because ht is entirely a function of the past. Similarly, E2/ht becomes one, since it
 is the only current value in the second term. Notice that these results hold

 regardless of whether xt includes lagged-dependent variables. The information
 matrix is the average over all t of the expected value of the conditional
 expectation and is, therefore, given by

 (23) 4i8 = { E[E( I I

 = 1 EEF tx,x + aht aht
 T t Lhst 2ht2 a: ap

 For the pth order linear ARCH regression this is consistently estimated by

 (24) = 1 T [ h ' +2aj2 2Jxt, xt 1.

 By gathering terms in x xt, (24) can be rewritten, except for end effects, as

 (25) jI1 = x 'xt;hth1 + 2 E7 Jaht7-I

 -Tx'xt rt2. T

 In a similar fashion, the off-diagonal blocks of the information matrix can be
 expressed as:

 (26) fafi= T Et 2h2 aa a8' )

 The important result to be shown in Theorem 4 below is that this off-diagonal
 block is zero. The implications are far-reaching in that estimation of a and /8 can
 be undertaken separately without asymptotic loss of efficiency and their vari-
 ances can be calculated separately.

 THEOREM 4: If an ARCH regression model is symmetric and regular, then
 ja1 = 0.

 PROOF: See Appendix.

 6. ESTIMATION OF THE ARCH REGRESSION MODEL

 Because of the block diagonality of the information matrix, the estimation of a
 and /8 can be considered separately without loss of asymptotic efficiency.
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 HETEROSCEDASTICITY 997

 Furthermore, either can be estimated with full efficiency based only on a

 consistent estimate of the other. See, for example, Cox and Hinkley [6, p. 308].

 The procedure recommended here is to initially estimate /8 by ordinary least

 squares, and obtain the residuals. From these residuals, an efficient estimate of a

 can be constructed, and based upon these a' estimates, efficient estimates of /3 are
 found. The iterations are calculated using the scoring algorithm. Each step for a

 parameter vector 0 produces estimates f +1 based on f according to

 (27) i1 = + i + A - -

 where I' and al,//ao are evaluated at O . The advantage of this algorithm is
 partly that it requires only first derivatives of the likelihood function in this case

 and partly that it uses the statistical properties of the problem to tailor the

 algorithm to this application.

 For the pth-order linear model, the scoring step for a can be rewritten by

 substituting (12), (13), and (14) into (27) and interpreting y as the residuals et7.
 The iteration is simply

 (28) a i + I = a i + (z,Fz) - "Ff

 where

 zt= (1,etU,, ... , et_ )/hti

 f= (e2 -h)

 f = (f,, ,f? )
 In these expressions, et is the residual from iteration i, ht' is the estimated
 conditional variance, and a' is the estimate of the vector of unknown parameters
 from iteration i. Each step is, therefore, easily constructed from a least-squares
 regression on transformed variables. The variance-covariance matrix of the

 parameters is consistently estimated by the inverse of the estimate of the

 information matrix divided by T, which is simply 2(z-z) '. This differs slightly
 from a2(z7- l computed by the auxiliary regression. Asymptotically, a = 2, if
 the distributional assumptions are correct, but it is not clear which formulation is
 better in practice.

 The parameters in a must satisfy some nonnegativity conditions and some
 stationarity conditions. These could be imposed via penalty functions or the
 parameters could be estimated and checked for conformity. The latter approach
 is used here, although a perhaps useful reformulation of the model might employ
 squares to impose the nonnegativity constraints directly:

 (29) ht =ao+aE1++ ** +a 2c2-P.
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 998 ROBERT F. ENGLE

 Convergence for such an iteration can be formulated in many ways. Following
 Belsley [3], a simple criterion is the gradient around the inverse Hessian. For a

 parameter vector, 0, this is

 (30) 9 = 0 ( 8- l 1 8/

 Using 9 as the convergence criterion is attractive, as it provides a natural
 normalization and as it is interpretable as the remainder term in a Taylor-series

 expansion about the estimated maximum. In any case, substituting the gradient

 and estimated information matrix in (30), 9 = R2 of the auxiliary regression.

 For a given estimate of a, a scoring step can be computed to improve the

 estimate of beta. The scoring algorithm for /8 is

 (31) ,i+ 1 = Ai+[ al'

 Defining xt = xrt and et = etst/rt with x and e as the corresponding matrix and
 vector, (31) can be rewritten using (22) and (24) and et for the estimate of Et on
 the ith iteration, as

 (32) /3i+1 = pi +(x)-

 Thus, an ordinary least-squares program can again perform the scoring iteration,

 and (x'xZ) - ' from this calculation will be the final variance-covariance matrix of
 the maximum likelihood estimates of /8.

 Under the conditions of Crowder's [7] theorem for martingales, it can be
 established that the maximum likelihood estimators a and /3 are asymptotically
 normally distributed with limiting distribution

 VT(& -a) - N(0, 4a
 (33)

 VT(13 -1) D*N(O, IiIl).

 7. GAINS IN EFFICIENCY FROM MAXIMUM LIKELIHOOD ESTIMATION

 The gain in efficiency from using the maximum-likelihood estimation rather

 than OLS has been asserted above. In this section, the gains are calculated for a

 special case. Consider the linear stationary ARCH model with p = 1 and all xt
 exogenous. This is the case where the Gauss-Markov theorem applies and OLS

 has a variance matrix a2(x'x)-1 = EE2(Et x'xt)-1. The stationary variance is
 a2 = ao/(l -a,)

 The information matrix for this case becomes, from (25),

 E[ x x'xt (h7 + 27a1I/ht+i)]
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 HETEROSCEDASTICITY 999

 With x exogenous, the expectation is only necessary over the scale factor.

 Because the disturbance process is stationary, the variance-covariance matrix is

 proportional to that for OLS and the relative efficiency depends only upon the

 scale factors. The relative efficiency of MLE to OLS is, therefore,

 R = E(ht-' + 2Et2a 2Ih 2 )&2

 Now substitute ht = ao + a Et_1, a2 = ao/I - a , and y = a/l - a,. Recogniz-
 ing that Et7_ and Et2 have the same density, define for each

 U= EF(1 -)/ao

 The expression for the relative efficiency becomes

 (34) R = E l + 2y + 2y2E u2 R=E(_Y2)(I+_Y

 where u has variance one and mean zero. From Jensen's inequality, the expected
 value of a reciprocal exceeds the reciprocal of the expected value and, therefore,
 the first term is greater than unity. The second is positive, so there is a gain in

 efficiency whenever -y #0. Eu-2 is infinite because u2 is conditionally chi
 squared with one degree of freedom. Thus, the limit of the relative efficiency goes
 to infinity with y:

 lim R-* 00.
 Y-*oo

 For a, close to unity, the gain in efficiency from using a maximum likelihood
 estimator may be very large.

 8. TESTING FOR ARCH DISTURBANCES

 In the linear regression model, with or without lagged-dependent variables,
 OLS is the appropriate procedure if the disturbances are not conditionally
 heteroscedastic. Because the ARCH model requires iterative procedures, it may
 be desirable to test whether it is appropriate before going to the effort to estimate
 it. The Lagrange multiplier test procedure is ideal for this as in many similar

 cases. See, for example, Breusch and Pagan [4, 5], Godfrey [12], and Engle [9].

 Under the null hypothesis, a = a2 * = ap = 0. The test is based upon the
 score under the null and the information matrix under the null. Consider the

 ARCH model with ht = h(zta), where h is some differentiable function which,
 therefore, includes both the linear and exponential cases as well as lots of others

 and zt = (1, et , I ,et_p) where et are the ordinary least squares residuals.
 Under the null, ht is a constant denoted ho. Writing at/la = h'zt', where h' is
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 1000 ROBERT F. ENGLE

 the scalar derivative of h, the score and information can be written as

 ai hl __ ho 0_

 aa o 2h t (ho 2h-

 o I hol 02
 au-2t ho Z

 and, therefore, the LM test statistic can be consistently estimated by

 (35) * = f0'Z (z'z) -Izf

 where z' = (z', * * *, f), J? is the column vector of

 This is the form used by Breusch and Pagan [4] and Godfrey [12] for testing for
 heteroscedasticity. As they point out, all reference to the h function has dis-
 appeared and, thus, the test is the same for any h which is a function only of zta.

 In this problem, the expectation required in the information matrix could be
 evaluated quite simply under the null; this could have superior finite sample
 performance. A second simplification, which is appropriate for this model as well

 as the heteroscedasticity model, is to note that plim fo'fol T = 2 because normal-
 ity has already been assumed. Thus, an asymptotically equivalent statistic would
 be

 (36) (= TfO'z(zz')-lztf0/f'tf0= TR2

 where R2 is the squared multiple correlation between f0 and z. Since adding a
 constant and multiplying by a scalar will not change the R 2 of a regression, this

 is also the R2 of the regression of et on an intercept and p lagged values of et.
 The statistic will be asymptotically distributed as chi square with p degrees of
 freedom when the null hypothesis is true.

 The test procedure is to run the OLS regression and save the residuals. Regress
 the squared residuals on a constant and p lags and test TR 2 as a 2. This will be
 an asymptotically locally most powerful test, a characterization it shares with
 likelihood ratio and Wald tests. The same test has been proposed by Granger
 and Anderson [13] to test for higher moments in bilinear time series.

 9. ESTIMATION OF THE VARIANCE OF INFLATION

 Economic theory frequently suggests that economic agents respond not only to
 the mean, but also to higher moments of economic random variables. In
 financial theory, the variance as well as the mean of the rate of return are
 determinants of portfolio decisions. In macroeconomics, Lucas [16], for example,
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 argues that the variance of inflation is a determinant of the response to various

 shocks. Furthermore, the variance of inflation may be of independent interest as

 it is the unanticipated component which is responsible for the bulk of the welfare

 loss due to inflation. Friedman [11] also argues that, as high inflation will

 generally be associated with high variability of inflation, the statistical relation-

 ship between inflation and unemployment should have a positive slope, not a

 negative one as in the traditional Phillips curve.

 Measuring the variance of inflation over time has presented problems to

 various researchers. Khan [14] has used the absolute value of the first difference

 of inflation while Klein [15] has used a moving variance around a moving mean.

 Each of these approaches makes very simple assumptions about the mean of the

 distribution, which are inconsistent with conventional econometric approaches.

 The ARCH method allows a conventional regression specification for the mean

 function, with a variance which is permitted to change stochastically over the

 sample period. For a comparison of several measures for U.S. data, see Engle

 [10].

 A conventional price equation was estimated using British data from 1958-II

 through 1977-II. It was assumed that price inflation followed wage increases;

 thus the model is a restricted transfer function.

 Letting p be the first difference of the log of the quarterly consumer price
 index and w be the log of the quarterly index of manual wage rates, the model

 chosen after some experimentation was

 (37) P = /1 +/- I + /l2 3-4 + fl3f-5 +/84(P - w)_ I+ 85-

 The model has typical seasonal behavior with the first, fourth, and fifth lags of
 the first difference. The lagged value of the real wage is the error correction

 mechanism of Davidson, et al. [8], which restricts the lag weights to give a
 constant real wage in the long run. As this is a reduced form, the current wage
 rate cannot enter.

 The least squares estimates of this model are given in Table I. The fit is quite
 good, with less than 1 per cent standard error of forecast, and all t statistics

 greater than 3. Notice thatp_4 and _5 have equal and opposite signs, suggesting
 that it is the acceleration of inflation one year ago which explains much of the
 short-run behavior in prices.

 TABLE I

 ORDINARY LEAST SQUARES (36)a

 Variable p-i p_4 p5 (p-W)_ Const. ao(X 10-6) al
 Coeff. 0.334 0.408 - 0.404 - 0.0559 0.0257 89 0
 St. Err. 0.103 0.110 0.114 0.0136 0.00572
 t Stat. 3.25 3.72 3.55 4.12 4.49

 a Dependent variable p = log(P) - log(P_ I) where P is quarterly U.K. consumer price index. w = log( W)
 where W is the U.K. index of manual wage rates. Sample period 1958-1l to 1977-ll.
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 1002 ROBERT F. ENGLE

 To establish the reliability of the model by conventional criteria, it was tested

 for serial correlation and for coefficient restrictions. Godfrey's [12] Lagrange
 multiplier test, for serial correlation up to sixth order, yields a chi-squared

 statistic with 6 degrees of freedom of 4.53, which is not significant, and the

 square of Durbin's h is 0.57. Only the 9th autocorrelation of the least squares
 residuals exceeds two asymptotic standard errors and, thus, the hypothesis of
 white noise disturbances can be accepted. The model was compared with an
 unrestricted regression, including all lagged p and w from one quarter through

 six. The asymptotic F statistic was 2.04, which is not significant at the 5 per cent

 level. When (37) was tested for the exclusion of w _ through w-6, the statistic
 was 2.34, which is barely significant at the 5 per cent but not the 2.5 per cent

 level. The only variable which enters significantly in either of these regressions is
 w-6 and it seems unattractive to include this alone.

 The Lagrange multiplier test for a first-order linear ARCH effect for the model

 in (37) was not significant. However, testing for a fourth-order linear ARCH
 process, the chi-squared statistic with 4 degrees of freedom was 15.2, which is
 highly significant. Assuming that agents discount past residuals, a linearly
 declining set of weights was formulated to give the model

 (38) ht = ao + a I(0.4ELI + 0.3E7_ 2 + 0.2EtU_3 + 0.1E7_4)

 which is used in the balance of the paper. A two-parameter variance function
 was chosen because it was suspected that the nonnegativity and stationarity

 constraints on the a's would be hard to satisfy in an unrestricted model. The
 chi-squared test for ai = 0 in (38) was 6.1, which has one degree of freedom.

 One step of the scoring algorithm was employed to estimate model (37) and
 (38). The scoring step on a was performed first and then, using the new efficient
 a, the algorithm obtains in one step, efficient estimates of /3. These are given in
 Table II. The procedure was also iterated to convergence by doing three steps on
 a, followed by three steps on /3, followed by three more steps on a, and so forth.
 Convergence, within 0.1 per cent of the final value, occurred after two sets of a
 and /3 steps. These results are given in Table III.

 The maximum likelihood estimates differ from the least squares effects primar-
 ily in decreasing the sizes of the short-run dynamic coefficients and increasing

 TABLE II

 MAXIMUM LIKELIHOOD ESTIMATES OF ARCH MODEL (36) (37)
 ONE-STEP SCORING ESTIMATESa

 Variable p_l p-4 P-5 (p- w) Const. a0(X106) a,

 Coeff. 0.210 0.270 - 0.334 - 0.0697 0.0321 19 0.846
 St. Err. 0.110 0.094 0.109 0.0117 0.00498 14 0.243
 t Stat. 1.90 2.86 3.06 5.98 6.44 1.32 3.49

 a Dependent variable p = log(P) - log(P l) where P is quarterly U.K. consumer price index. w = log( W) where
 W is the U.K. index of manual wage rates. Sample period 1958-II to 1977-II.
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 TABLE III

 MAXIMUM LIKELIHOOD ESTIMATES OF ARCH MODEL (36) (37)
 ITERATED ESTIMATESa

 Variables p _ p5 ( - _ Const. a0 (X 10-6) a1
 Coeff. 0.162 0.264 -0.325 -0.0707 0.0328 14 0.955
 St. Err. 0.108 0.0892 0.0987 0.0115 0.00491 8.5 0.298
 t Stat. 1.50 2.96 3.29 6.17 6.67 1.56 3.20

 'Dependent variable p = log(P) - log(P I) where P is quarterly U.K. consumer price index. w = log(W) where W
 is the U.K. index of manual wage rates. Sample period 1958-1l to 1977-ll.

 the coefficient on the long run, as incorporated in the error correction mecha-
 nism. The acceleration term is not so clearly implied as in the least squares

 estimates. These seem reasonable results, since much of the inflationary dynam-
 ics are estimated by a period of very severe inflation in the middle seventies.

 This, however, is also the period of the largest forecast errors and, hence, the

 maximum likelihood estimator will discount these observations. By the end of the

 sample period, inflationary levels were rather modest and one might expect that

 the maximum likelihood estimates would provide a better forecasting equation.
 The standard errors for ordinary least squares are generally greater than for

 maximum likelihood. The least squares standard errors are 15 per cent to 25 per
 cent greater, with one exception where the standard error actually falls by 5 per
 cent to 7 per cent. As mentioned earlier, however, the least squares estimates are

 biased when there are lagged dependent variables. The Wald test for a, = 0 is
 also significant.

 The final estimates of ht are the one-step-ahead forecast variances. For the
 one-step scoring estimator, these vary from 23 x 10-6 to 481 x 10-6. That is, the
 forecast standard deviation ranges from 0.5 per cent to 2.2 per cent, which is

 more than a factor of 4. The average of the ht, since 1974, is 230 x 10-6, as
 compared with 42 x 10-6 during the last four years of the sixties. Thus, the
 standard deviation of inflation increased from 0.6 per cent to 1.5 per cent over a
 few years, as the economy moved from the rather predictable sixties into the
 chaotic seventies.

 In order to determine whether the confidence intervals arising from the ARCH
 model were superior to the least squares model, the outliers were examined. The

 expected number of residuals exceeding two (conditional) standard deviations is

 3.5. For ordinary least squares, there were 5 while ARCH produced 3. For least
 squares these occurred in '74-I, '75-I, '75-II, '75-IV, and '76-II; they all occur
 within three years of each other and, in fact, three of them are in the same year.
 For the ARCH model, they are much more spread out and only one of the least
 squares points remains an outlier, although the others are still large. Examining
 the observations exceeding one standard deviation shows similar effects. In the
 seventies, there were 13 OLS and 12 ARCH residuals outside one sigma, which
 are both above the expected value of 9. In the sixties, there were 6 for OLS, 10
 for ARCH and an expected number of 12. Thus, the number of outliers for
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 1004 ROBERT F. ENGLE

 ordinary least squares is reasonable; however, the timing of their occurrence is

 far from random. The ARCH model comes closer to truly random residuals after

 standardizing for their conditional distributions.

 This example illustrates the usefulness of the ARCH model for improving the

 performance of a least squares model and for obtaining more realistic forecast
 variances.

 University of California, San Diego

 Manuscript received July, 1979; final revision received July, 1981.

 APPENDIX

 PROOF OF THEOREM 1: Let

 (A2) w' = (y2r,y2(r- 1). y2)

 First, it is shown that there is an upper triangular r X r matrix A and r x 1 vector b such that

 (A2) E(w,41)= b + Aw, 1.

 For any zero-mean normal random variable u, with variance c 2,

 E(u2r)= a2r n (2j- 1).
 j=1

 Because the conditional distribution of y is normal

 (A3) E(y72m )=h2m n (2j-1)
 j-l

 m

 =(aly2 l + ao)m n (2j- 1).

 Expanding this expression establishes that the moment is a linear combination of w, 1. Furthermore,
 only powers of y less than or equal to 2m are required; therefore, A in (A2) is upper triangular.

 Now

 E(w, | = b + A (b + Aw,_2)

 or in general

 E(w, ( + A + A 2 + *+ A k- l)b + A kWk

 Because the series starts indefinitely far in the past with 2r finite moments, the limit as k goes to
 infinity exists if, and only if, all the eigenvalues of A lie within the unit circle.

 The limit can be written as

 lim E(w, | k)=(l-A)Y'b,
 k ooo

 which does not depend upon the conditioning variables and does not depend upon t. Hence, this is
 an expression for the stationary moments of the unconditional distribution of y.

 (A4) E(w,) = (1- A )-'b.
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 It remains only to establish that the condition in the theorem is necessary and sufficient to have all
 eigenvalues lie within the unit circle. As the matrix has already been shown to be upper triangular,
 the diagonal elements are the eigenvalues. From (A3), it is seen that the diagonal elements are simply

 m m

 (ema (2j - 1) a I o(2j 1- I 0,
 j=1 j=1

 for m-l, . . ., r. If Or exceeds or equals unity, the eigenvalues do not lie in the unit circle. It must
 also be shown that if Or < 1, then Om < 1 for all m < r. Notice that 0,, is a product of m factors which
 are monotonically increasing. If the mth factor is greater than one, then 0n? l will necessarily be
 smaller than Om. If the mth factor is less than one, all the other factors must also be less than one and,

 therefore, Om - I must also have all factors less than one and have a value less than one. This
 establishes that a necessary and sufficient condition for all diagonal elements to be less than one is
 that Or < 1, which is the statement in the theorem. Q.E.D.

 PROOF OF THEOREM 2: Let

 w, = (y72 y2 1, . . ., y2 P).

 Then in terms of the companion matrix A,

 (A5) E(w, I ipt- ,) = b + Awt_ l

 where b' = (ao, 0 0, ) and

 a/, at2 ... ap ?

 A= I 0 -- 0 0].
 0 1 ... O O
 O O ... I 0

 Taking successive expectations

 E(w,t I At-k) = (l + A + A2+ *+ Ak- )b + A kwk
 Because the series starts indefinitely far in the past with finite variance, if, and only if, all eigenvalues
 lie within the unit circle, the limit exists and is given by

 (A6) lim E(w, 14| -k) = (l-A)- lb.
 k-*oo

 As this does not depend upon initial conditions or on t, this vector is the common variance for all t.
 As is well known in time series analysis, this condition is equivalent to the condition that all the roots
 of the characteristic equation, formed from the a's, lie outside the unit circle. See Anderson [2, p.
 177]. Finally, the limit of the first element can be rewritten as

 (A7) Ey7 = ao/( I- I aj) Q. E. D.

 PROOF OF THEOREM 3: Clearly, under the conditions, h(t,) >? ao0> 0, establishing part (a). Let

 41tnit = E(gah(~t )/aalIah((t )/a,t-m I 4t-n- I)

 = 2amE(I1t-l21lt_ mIt-_m-_ 1).

 Now there are three cases; i > m, i = m, and i < m. If i > m, then ,t & tp,,,I and the
 conditional expectation of 1t,-,j is finite, because the conditional density is normal. If i = m, then
 the expectation becomes E(t-,,,I3' I -rn- m-). Again, because the conditional density is normal, all
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 moments exist including the expectation of the third power of the absolute value. If i < m, the
 expectation is taken in two parts, first with respect to t - i - 1:

 = 2amE { 'ItmIE(t-, I 4,t-l- l) 'Pt-r-l)

 2amE {ltrnmao + 2 i ajtj ) I-r-l}

 p

 =2amaoE {t- {m I4,r + I a(p+j,m,t
 j='i

 In the final expression, the initial index on p is larger and, therefore, may fall into either of the
 preceding cases, which, therefore, establishes the existence of the term. If there remain terms with

 i + j < m, the recursion can be repeated. As all lags are finite, an expression for 0,,mrt can be written
 as a constant times the third absolute moment of at-rm conditional on 'Pt-m- I, plus another constant
 times the first absolute moment. As these are both conditionally normal, and as the constants must be
 finite as they have a finite number of terms, the second part of the regularity condition has been
 established. Q. E. D.

 To establish Theorem 4, a careful symmetry argument is required, beginning with the following
 lemma.

 LEMMA: Let u and v be any two random variables. E(g(u, v) I v) will be an anti-symmetric function

 of v if g is anti-symmetric in v, the conditional density of u I v is symmetric in v, and the expectation
 exists.

 PROOF:

 E( g(u, - v) I-v) =-E( g(u, v) I-v) because g is anti-symmetric in v

 = E(g(u, v) I v) because the conditional density is symmetric.

 Q.E.D.

 PROOF OF THEOREM 4: The i, j element of l.,B is given by

 E ah, ah, YltA) 2T E (h2 aa, a,

 ~ 2T E2MEIES h7 a a,r, "ij by the chain rule.

 If the expectation of the term in square brackets, conditional on At-m- m is zero for all i, j, t, m, then
 the theorem is proven.

 E(h2 aa, ae Et X-ZW I m "-} x7, -,,,Eh h2 aa,, ar 'I A-m I

 because xJ_ is either exogenous or it is a lagged dependent variable, in which case it is included in

 'Pt - rnat -t h, ah

 |E(h2 / I 2't-rn- l < 1( h2 a a,| a, -m| t-r-i

 ah| ahIt

 -32 aa, aE_ )
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 HETEROSCEDASTICITY 1007

 by part (a) of the regularity conditions and this integral is finite by part (b) of the condition. Hence,
 each term is finite. Now take the expectation in two steps, first with respect to 't-m This must
 therefore also be finite.

 If aht aht + )

 By the symmetry assumption, h,-l is symmetric in E___8 /,, is anti-symmetric. Therefore,
 the whole expression is anti-symmetric in E,rn, which is part of the conditioning set A,_ Because h
 is symmetric, the conditional density must be symmetric in E,_1 and the lemma can be invoked to

 show that g(E,-"1) is anti-symmetric.
 Finally, taking expectations of g conditional on 'Pt-m- gives zero, because the density of E1-n

 conditional on the past is a symmetric (normal) density and the theorem is established. Q.E.D.
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